Towards constraining Sahel rainfall responses to global mean temperature changes*

Spencer Hill, Yi Ming, and Isaac Held with thanks to Ming Zhao and Leo Donner

*choose your own paleo-implication adventure

But first (Overly) simple hypothesis for 3° PW⁻¹ ITCZ-energy flux slope

Sufficient conditions for invariant ϕ_{ITCZ} - F_{EQ} slope:

But first (Overly) simple hypothesis for 3° PW⁻¹ ITCZ-energy flux slope

Sufficient conditions for invariant ϕ_{ITCZ} - F_{EQ} slope:

1. Hadley cells dominate equatorial flux $(F_{EQ} \approx \{[\overline{h}][\overline{v}]\})$

But first (Overly) simple hypothesis for $3^{\circ} PW^{-1}$ ITCZ-energy flux slope

Sufficient conditions for invariant ϕ_{ITCZ} - F_{EQ} slope:

- 1. Hadley cells dominate equatorial flux $(F_{EQ} \approx \{[\overline{h}][\overline{v}]\})$
- 2. Fixed relation between overturning strength and ITCZ position ($\phi_{\rm ITCZ} = a \Psi_{\rm max}$)

But first (Overly) simple hypothesis for $3^{\circ} PW^{-1}$ ITCZ-energy flux slope

Sufficient conditions for invariant ϕ_{ITCZ} - F_{EQ} slope:

- 1. Hadley cells dominate equatorial flux ($F_{EQ} \approx \{[\overline{h}][\overline{v}]\}$)
- 2. Fixed relation between overturning strength and ITCZ position $(\phi_{\rm ITCZ} = a \Psi_{\rm max})$
- 3. Constant efficiency of energy transport (a.k.a. gross moist stability Γ)

#3: see *Hill, Ming, and Held 2015*, J. Climate "Stable get stabler", but modeling evidence inconclusive Towards constraining Sahel rainfall responses to global mean temperature changes*

Spencer Hill, Yi Ming, and Isaac Held with thanks to Ming Zhao and Leo Donner

*choose your own paleo-implication adventure

The Sahel Transition between the Sahara and equatorial Africa

Wikipedia: The Arabic word "sahil" literally means "shore, coast", describing the appearance of the vegetation found in the Sahel as being akin to that of a coastline delimiting the sand of the Sahara.

The Sahel Transition between the Sahara and equatorial Africa

Wikipedia: The Arabic word "sahil" literally means "shore, coast", describing the appearance of the vegetation found in the Sahel as being akin to that of a coastline delimiting the sand of the Sahara.

The Sahel Transition between the Sahara and equatorial Africa

Wikipedia: The Arabic word "sahil" literally means "shore, coast", describing the appearance of the vegetation found in the Sahel as being akin to that of a coastline delimiting the sand of the Sahara.

Problem Severe 20th century drought, severe 21st century uncertainty

Fig 3(b) of Bony et al 2015 & Fig. 1(a) of Park et al 2015

Problem Severe 20th century drought, severe 21st century uncertainty

Simpler Uniform δ SST: just as uncertain but much less studied

July-August-September δP in +2 K simulations in two GFDL AGCMs

Mean warming: most robust SST signal "Global warming"

Coupled models using AM2 as atmospheric component: future drying almost entirely due to +2K C.f. *Held et al 2005*

Our approach Brute force: model-by-model MSE & *q* budget analysis

$$h \equiv c_p T + gz + L_v q, \quad \{\} \equiv \int_0^{p_{\rm sfc}} \frac{\mathrm{d}p}{g}$$

$$\overline{F}_{\text{net}} = \{\overline{h\nabla \cdot \mathbf{v}}\} + \{\overline{\mathbf{v}\nabla \cdot h}\},\$$
$$\overline{E} - \overline{P} = \{\overline{q\nabla \cdot \mathbf{v}}\} + \{\overline{\mathbf{v}\nabla \cdot q}\}$$

Focus on AM2.1: dry end member of CMIP If falsified, spread reduced appreciably Towards constraining Sahel rainfall responses to global mean temperature changes*

Climatology Dry, low MSE air advection from Sahara is leading order term in budgets

+2 K response Effect of warming on P depends on climatological budgets and cloud feedbacks

Constraints from obs Can compare interannual variability in AMIP runs with +2K and obs Towards constraining Sahel rainfall responses to global mean temperature changes*

Climatology Dry, low MSE air advection from Sahara is leading order term in budgets

+2 K response Effect of warming on P depends on climatological budgets and cloud feedbacks

Constraints from obs Can compare interannual variability in AMIP runs with +2K and obs

Land role Aridity constrains surface and atmospheric dynamics

Any land region: $\overline{P} \geq \overline{E}$ and $\overline{R}_{sfc} + L_v \overline{E} + \overline{H} \approx 0$ Thus $\overline{F}_{net} \approx \overline{R}_{TOA}$

Moisture-limited *E* regime $\overline{E} = \beta \overline{P}, \beta$ - constant

Flow from Sahara dominates advection $\overline{v} \cdot \nabla \overline{h} \approx \overline{v} \frac{\partial \overline{h}}{\partial y}$

$$\overline{R}_{\text{TOA}} = \{\overline{h}\nabla\cdot\overline{\mathbf{v}}\} + \{\overline{v}\frac{\partial h}{\partial y}\},\$$
$$(\beta - 1)\overline{P} = \{\overline{q}\nabla\cdot\overline{\mathbf{v}}\} + \{\overline{v}\frac{\partial\overline{q}}{\partial y}\}$$

Energy Weak MSE divergence by convection compensated by dry advection

 $\overline{h} \nabla \cdot \overline{\mathbf{v}}$ 8.7 W m⁻²

 $\overline{\mathbf{v}} \cdot \nabla \overline{h}$ 36.7 W m⁻²

Moisture Strong convective convergence partly offset by dry advection

 $\overline{q}
abla \cdot \overline{\mathbf{v}}$ -3.66 mm day⁻¹

 $\overline{\mathbf{v}} \cdot \nabla \overline{q}$ 1.91 mm day⁻¹

Towards constraining Sahel rainfall responses to global mean temperature changes*

Climatology Dry, low MSE air advection from Sahara is leading order term in budgets

+2 K response Effect of warming on P depends on climatological budgets and cloud feedbacks

Constraints from obs Can compare interannual variability in AMIP runs with +2K and obs

Stabilization Drying mostly due to warming aloft driven by West Pacific warming

Add'I AM2.1 run: +2K in Indo-Pacific Warm Pool Sahel drying ~80% of uniform +2K drying

Enhanced convection + WTG = inc. stability Convective Q-E

δ Energy Upped ante mechanism acting on dry-side convective margin

δ **Moisture** Both suppressed convergence and enhanced dry advection yield drying

Clouds Reduced cloud SW shading amplifies drying through MSE budget

Reinforces direct suppression of convective MSE export Advection has to compensate more strongly: more drying

Clear sky OLR increase exactly cancels: $\delta R_{\rm TOA} \approx 0$ This is likely coincidental, i.e. not a constraint

Omega Control ascent profile modulates impact of upper-tropospheric stabilization

Top-heavy ascent: convection more suppressed by warming aloft c48-HiRAM: very shallow, so doesn't "feel" stabilization

δ SST P-E response saturates above $\sim \pm 2$ K SST perturbation

Towards constraining Sahel rainfall responses to global mean temperature changes*

Climatology Dry, low MSE air advection from Sahara is leading order term in budgets

+2 K response Effect of warming on P depends on climatological budgets and cloud feedbacks

Constraints from obs Can compare interannual variability in AMIP runs with +2K and obs

Clouds +2 K responses match interannual variability and thus can compare v. obs

MERRA All MSE budget terms smaller but same sign as AM2

MERRA 1979-2011 JAS vert. int. MSE budget

$$\{\overline{\mathbf{v}}\cdot
abla\overline{h}\}$$
28.6 W m $^{-2}$

Towards constraining Sahel rainfall responses to global mean temperature changes*

Climatology Dry, low MSE air advection from Sahara is leading order term in budgets

+2 K response Effect of warming on P depends on climatological budgets and cloud feedbacks

Constraints from obs Can compare interannual variability in AMIP runs with +2K and obs

Discussion & outstanding questions

What determines the climatological budgets & velocity profiles? Convection scheme? Resolution? Land model?

Discussion & outstanding questions

What determines the climatological budgets & velocity profiles? Convection scheme? Resolution? Land model?

Global mean δT matters & additive w/ SST spatial pattern CMIP multi-model means: always need to normalize model's δP

Discussion & outstanding questions

What determines the climatological budgets & velocity profiles? Convection scheme? Resolution? Land model?

Global mean δT matters & additive w/ SST spatial pattern CMIP multi-model means: always need to normalize model's δP

Testing model projections: need process-level diagnostics Requires characterizing mean state and variations Towards constraining Sahel rainfall responses to global mean temperature changes*

Contact: spencerh@princeton.edu

Zonal mean: *Hill, Ming, and Held 2015* J. Climate Sahel: Manuscript(s) in preparation

AM2.1 moisture budget decomposition

(b) $\overline{v \cdot \nabla q}$

 $\overline{q\nabla \cdot v}$

-17 -13 -5 7 11 15 -9 3 kg m⁻² day⁻¹

Control and +2K horizontal moisture advection

Control and +2K vertical moisture advection

Control and +2K horizontal MSE advection

+2K JAS $\{\overline{v} \cdot \nabla h\}$

AM3

HIRAM

c48-HiRAM

11

-190 -130 -70 -10 50 110 170 Wm⁻²

Control and +2K vertical MSE advection

+2K JAS $\{\overline{\omega\partial h/\partial p}\}$

AM3

AM3

HIRAM

c48-HiRAM

HIRAM

c48-HiRAM

