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SAM biases in CMIP5 models
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» More than half of 42 GCMs are unable to simulate the monsoon onset
timing to within 2 pentads of the observed onset timing over most
(>60%) of the South Asian landmass

: No. of models with onset
Monsoon Dynamics (1970-1999) +2 pentads of the observed
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Relationship between biases in

precipitation and monsoon dynamics
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Role of pre-monsoon biases in MTG biases rxiic ortiwest
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» Pre-monsoon precipitation occurs over the Himalayas and Karakoram range,
resulting in large latent heat flux along the slope

Mar-April-May Precipiation and Latent Heat Flux
_CRU Precipitation

NCEP R1 Surface Latent Heat Flux

TRMM Precipitation
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Does higher resolution help?

» Comparison of CAM simulations at T85 and T341 resolution
Annual Cycles (1999-2009)

1

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Monsoon Dynamics (1999-2009)
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No improvement in latent heat flux bias Pacific Northwest
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» Improvement in MTG at T341 is due to a larger cold bias over the ocean /
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Tropical cyclones in Bay of Bengal  rerenomes
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» 8 out of the 10 deadliest TCs in recorded history have occurred in
BoB

no.of cyclonic disturbances
2
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Source: Indian Meteorological Department
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A meridional dipole in BoB TC activities rerinorthwest
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Trends in BoB TC activities related to
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Changes in shear
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Changes in GPI ?
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Correlation between MTG and SST (1980-2013)

A shift towards La
Nina-like SST pattern
post 1997 favors
earlier monsoon
onset

Changes in MTG

Gill-type response to diabatic
heating (Rodwell, M. J. and B. J.
Hoskins, 1996; Su, H., Neelin, D. and
Meyerson, J. E., 2002)
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CMIPS models captured the ENSO-

monsoon onset-TC relationship

Correlation - (ENSO,Delta TT)
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From CMIP5 historical
simulations for
1850-2005

Correlation coefficients
(ENSO, MTG)

Correlation coefficients
(MTG, GPI)
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Future work Pacific Nortwest
» Simulations of Asian monsoon using two variable
resolution modeling frameworks:
B DOE Accelerated Climate Model for Energy (ACME) with the
Spectral Element dynamical core and regionally refined grids at V4

to 1/8 degree resolution over the U.S. and Asia (AMIP and CMIP
style) with various combinations of forcings

T

Accelerated Climate Modeling
for Energy

B Using the non-hydrostatic MPAS with regionally refined grids down
to 4 km resolution over the U.S. and Asia (AMIP style only)

May 21, 2015 13



Pacific Northwest

Model for Prediction Across Scales (MPAS) recic nortrwest

Uniform High Resolution
(UHL ~30 km)

Uniform Low Resolution
(ULR ~120 km)
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Same CAM4 physics parameterizations for all simulations (Sakaguchi et al. 2015 J. Climate)



Precipitation in South America Pacifc Norttwest.
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Model skill of VR compared to UHR

S. America (wet season)
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0.25 0.50 0.75 AEF 1.25
Standard Deviations (Normalized)

7 surface sensible heat flux

8: surface downward solar radiation

9: air temperature at 2 m height

10: geopotential height at 500 hPa level
11: wind vector at 200 hPa level

12: wind vector at 850 hPa level
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Resolution effects on SAM SimU|atiOnSa°‘ﬂgo%°::‘§!(s/3%m
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MPAS non-hydrostatic model -~
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MPAS mesh mean cell spacing (km)

(Grell and Freitas, 2014, ACP)

» Stochastic approach from Grell and
Devenyi, 2002.

« Scale aware by adapting the Arakawa
et al approach (2011).

» Transitions to precipitating shallow

scheme as grid spacing decreases.
o At very high resolution (dx < 3km)
parameterized convection becomes
much shallower — cloud tops near
800 mb (down from 200-300 mb).
o Temperature & moisture tendencies
decrease as resolution increases.

3-50 km mesh, Dx contours 4, 8, 12, 20, 30 40 km
approximately 6.85 million cells
68% have < 4 km spacing

(158 pentagons, 146 septagons) Source: Bill Skamarock 18



Precipitation in the mesh transition region e nertnwest
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MPAS 50-3 km mesh,
Grell-Freitas convection scheme
3 day 12h forecast valid at ' Sotdi. . e
2013-05-21_12:00 " AP e

Explicit precipitation —=—>

(resolved on the mesh)
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GF convection scheme gradually
turns off as mesh spacing
transitions to convection-

permitting scales.
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3-day forecast test
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500 hPa vorticity at 2013-05-18_01:00:00 OLR and dBZ, 2013-05-18_01:00:00
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A large number of CMIP5 models produce significant biases in
simulating the SAM precipitation and temperature

Biases in precipitation are related to biases in monsoon
dynamics (MTG and wind shear)

Biases in monsoon circulation correlate with biases in pre-
monsoon surface latent heat flux in the Himalayas

High resolution may or may not improve simulations

The ENSO-monsoon onset-TC relationships are well captured
by CMIP5 models

Global variable resolution models are useful tool for testing
impacts of model resolution

Non-hydrostatic global variable resolution models are now
feasible for convection permitting modeling to support
investigations of monsoon science questions
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