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Modelled Southern Ocean warming
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Frölicher et al. (2015)

Southern Ocean dominates global heat uptake in CMIP5.

Huge spread in Southern Ocean heat uptake: ±40% (1σ).

Smaller spread in Southern Ocean carbon uptake: ±10%.

Dependent on:

ocean transport processes
(mixing, eddies, overturning, ...)

atmospheric processes
(aerosols, clouds, ...)

Dependent on:

atmospheric CO2

[solubility, buffering,
overturning change]
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CM2.6: GFDL’s eddying, global coupled model
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MOM5 ocean, 1/10◦ resolution, 50 vertical levels

No eddy parameterisations (diffusive or advective)

Coupled to sea ice, land, 50 km atmosphere models

Ocean vertical mixing schemes include: internal gravity wave breaking,
coastal mixing, KPP boundary layer, etc (zero background diffusion).

Fox-Kemper mixed layer submesoscale restratification scheme.
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CM2.6 heat uptake

Adele Morrison (Princeton) Southern Ocean heat uptake

120 year spinup with preindustrial CO2

80 year idealised 1%/yr CO2 experiment,
analysis of 20 yr average at 2xCO2 (yrs 61-80)



CM2.6 heat uptake
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Anomalous surface flux (dominated by sensible heat) is over
upwelling region, 50-60◦S, where SST is relatively constrained.

Peak storage fixed at 40-45◦S.
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Peak warming location
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Maximum warming aligned with
deep mixed layers.

Very little heat transport into
mode / intermediate waters.



Dominant transport processes / mechanisms
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Meridional heat transport
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Control northward heat transport (PW)

Following eddy decomposition of Lee et al. 2007:

vθh =
vh

h

θh

h
h+

(
v − vh

h

)(
θ − θh

h

)
h

divergence

convergence

Change in fluxes (PW)

Main heat convergence in deep mixed layers (40-45◦S) is driven by
advection changes.

Warming north of deep mixed layers (30-40◦S) is driven by isopycnal
diffusion changes (which respond to peak warming further south).
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What drives the advective changes in the south?
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Is the enhanced heat transport at 50◦S due to increased overturning
or warmer Ekman layer?

Maximum overturning increases by 13%
(wind stress +6%, 1.5◦ shift south, increased buoyancy flux)

temperature
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circulation
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Northward heat transport anomaly (PW), 0-100m

θ

∆vθ = v ref ∆θ + (∆v)θref

+ ∆v∆θ + ∆v ′θ′

Increased upwelling has minor
impact on heat transport.
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What drives the advective changes in the north?
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Heat is not a passive tracer - Stommel’s demon: only cold, dense water is
selected out of mixed layer into mode / intermediate waters.

Also:
Banks and Gregory 2006
Winton et al. 2013
Frolicher et al. 2015

Carbon storageHeat storage



Conclusions
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deep ML boundary

Intense Southern Ocean warming is due to
advective convergence at deep mixed layers.

Eddy diffusion transports heat northwards
from deep mixed layers (equally as
important as mode / intermediate water
advection).

Mode / intermediate water formation
processes are critical.

Enhanced upwelling has only minor impact.
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