Robust Patterns and Uncertainties of Tropical Rainfall and Circulation Projections

Shang-Ping Xie Scripps Institution of Oceanography, UCSD

with S. M. Long (Ocean Univ China)

Precipitation change is to first order spatially variable.

- What determines patterns of rainfall change?
- Can we predict the pattern?

Climate change (1986–2005 to 2081–2100), Business as usual (RCP8.5); IPCC AR5

What determines rainfall change?

The wet gets wetter

(e.g., Neelin et al. 2003; Held & Soden 2006) **Precipitation** increases in equatorial rain bands; decreases in subtropics; and increases in high-latitudes due to increase in moisture transport

2K uniform SST warming: mean (contour) and change of precipitation → Wet-get-wetter pattern

Flat warming in upper troposphere ← weak temp gradient (Sobel et al. 2001)
Convective instability follows closely SST patterns

Convective Instability: $I_M = (c_p T + Lq)_{sfc} - (c_p T + Lq)_{300 hPa}$

Xie, S.-P., C. Deser, G.A. Vecchi, J. Ma, H. Teng, and A.T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. *J. Climate*, 23, 966-986.

Ocean warming pattern effect: warmer get wetter

 $\Delta T=2.8^{\circ}C$ (Tropical mean) r($\Delta T,\delta P/P$)=0.63

(Tropical region)

Robust patterns:

- Equatorial peak in Pacific and Atlantic
- Warmer NH than SH

IPCC AR5 Figure 14.8

Decomposition of rainfall change

Wet get wetter

Circulation slowdown + SST pattern

Inter-model variability in 2050-99 minus 1950-99 difference

Dynamic component dominates inter-model spread

S.M. Long, in prep.

Atmospheric circulation uncertainty is tightly coupled with SST patterns

SVD analysis of inter-model spread of zonal mean Δ SST & $\Delta\omega$ in CMIP5

See (Ma & Xie 2013, JC) for CMIP3 analysis

Leading uncertainties for global mean temperature

- Radiative forcing: aerosol
- Climate feedback: cloud

Leading uncertainty for regional change: atmospheric circulation

- Coupling with ocean in tropics
- Internal variability in midlatitudes

Leading sources of global and regional climate projections. Insets are multimodel projections for surface temperature (left) and precipitation (right) from IPCC AR5.

Monsoon change in AR5

Globally, it is *likely* that the area encompassed by monsoon systems will increase over the 21st century. While monsoon winds are *likely* to weaken, monsoon precipitation is *likely* to intensify due to the increase in atmospheric moisture. ... resulting in lengthening of the monsoon season in many regions. AR5 SPM

Sahel rainfall change vs. N Atlantic relative SST

Giannini et al. (2013, ERL)

Physical origins of regional climate change.

Near emission source, aerosol forcing dominates circulation and rainfall response.

All forcing

Asian summer monsoon

Aerosol

Challenges

- Over ocean, SST pattern, circulation and rainfall are coupled (diagnostic), but are there overarching principals (predictive)?
- What determines rainfall/monsoon change over continents?
- Interannual variability and extremes?