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Archimedes’ Principle: applied to icebergs
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http://www.accuweather.com/en/weather-news/icebergs-still-a-threat-100-ye/63626



|Isostasy (Archimedes Principle)

Airy Isostasy
Ty

Crust

W

Mantle

L

cool

Crust

Mantle

Pratt Isostasy

Temperature

cool

Depth of Compensation

At the Depth of Compensation, the vertical normal stress,
or “lithostatic pressure,” Is equal everywhere.
Therefore, the weight of a column (per unit area) above the

Depth of Compensation Is the same everywhere,
assuming that vertical shear stresses are negligible.



Animation by Tanya Atwater

(given to me for my 60t birthday, and hence honoring all of my prejudices, but not necessarily all of the facts)




Reconstructed positions of India with respect to
Eurasia: the history of their convergence

Age (Ma)
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0 T T T T T rak

Morthwest Corner he N
1000 L of India e a4

- ~ s a8

3000 |- ,\é“f*\ /A -

MNortheast
/ Corner

4000 - ;
,fg\ of India

Distance (km)

M. 5000

SDDD Ii 1 1 1 1 1 1

Molnar and Stock [2009], based on work of
Horner-Johnson et al. [2005, 2007], Lemaux et

I al. [2002], McQuarrie et al. [2003], Merkouriev
8”& DeMets [2006], and Molnar et al. [1988].
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Stages in the Growth of Tibet
1. Before collision, at 40 Ma, a narrow high
‘range likeythe p / <} pparently) |

! S
1. The Himalaya has been built by slices of TAg
crust thrust atop the Indian subcontinent. \

Animation by Tanya Atwater

(given to me for my 60" birthday, and hence honoring all of my prejudices, but not necessarily all of the facts)



Depth (km)

Adapted from Avouac [2003]
South North

100 | | | | | |

0 100 200
Distance (km)

The Himalaya has been built by the stacking of
slices of Indid's crust.

4



‘Stages in the Growth of Tibet
3. Since Collision, India .. penetrated steadily into
Eurasia hort enir / | Bning Asian crust_

_to byt 6
<
= X

§ .

Animation by Tanya Atwater

(given to me for my 60" birthday, and hence honoring all of my prejudices, but not necessarily all of the facts)




|Isostasy (Archimedes Principle)

Airy Isostasy
Ty

Crust

W

Mantle

L

cool

Crust

Mantle

Pratt Isostasy

Temperature

cool

Depth of Compensation

Aliry 1sostasy accounts for high terrain of most mountain
belts and high plateaus like Tibet and the Altiplano.

Pratt isostasy accounts for the depth of the sea floor and
high regions like East Africa, the Basin-and-Range
province, and maybe the Southern Rocky Mountains.



Lithostatic Pressure, Available Potential
Energy, and Force per unit length

Airy Isostasy

Forces per Unit Length Resisting Convergence
(Available Potential Energy)

Lithostatic
Pressure = P | T
Force I Force <
per unit Gk per unit
length < length 5]
applied by I L applied by
£ lowlands fo ] \ plateau to -~
% plateau -<— \ lowlands —>|
- —>
—» Mantle Force -
per unit
< length —>
—» Resisting -~<—

Convergence



35 g

30°

80"

Normal fault

Thrust fault

Throughout Tibet:
normal faulting,
- E-W crustal
” extension, and
crustal thinning.
Surroundings :
thrust faulting,
“crustal shortening,
and crustal
thickening.

[Elliott, Walters, England, Jackson,

Li, and Parsons 2010]

Strike-slip fault

LR A



Throughout Tibet:
normal faulting,
. E-W crustal
extension, and
crustal thinning.
Surroundings :
~ thrust faulting,
“crustal shortening,
and crustal
thickening.

(m) [Elliott, Walters, England, Jackson,
0 2000 4000 6000 Li, and Parsons 2010]

Strike—Slip S O 6 m . .
e 9 @ HEINSCS®ROS & © The high region
Normal ) 50(9) 9) 8 spreads apart, and

0 1 OIDD EDlﬂl'J SDIDO 4UIDD SDIDD Bﬂlﬂﬂ O n to th e I Owe r !
Elevation (m) surrounding
regions.




Tibet:

a
humongous
piece of ripe
Camembert
(or Brie)
cheese
spreading
out, onto SE
China and
the India
Plate.

From Selverstone [2005]



A high

plateau
* cannot be

built by

normal
faulting.
0 2000 4000 6000 S O m e
Strike-Slip S O & m Change
Thrust & @ QST EeLY S § @
O OO must have

[ I I I I I I
0 1000 2000 3000 4000 5000 6000
Elevation (m) OCCU rred "

[Elliott, Walters, England, Jackson, Li, and Parsons 2010]



Initial State: Horizontal shortening

Mantle Lithosphere ]

Asthenosphere

Crustal Thickening and
Mountain or Plateau Building

Higher
Density

Lower Density

Thickening of Unstable
Lithospheric Root

Shortening and
Thickening of lithosphere
(crust and mantle)



Initial State: Horizontal shortening _
Shortening and

(— Thickening of lithosphere
(crust and mantle)

Mantle Lithosphere

Asthenosphere

Crustal Thickening and Surface Uplift,
Mountain or Plateau Building due to removal of Lithospheric Load Removal of
blobs of dense
mantle
lithosphere

(“deblobbing”)
reduces load
to base of
Removal of Lithospheric Root lithosphere:
Thickening of Unstable and available
Lithospheric Root potential
energy within
the
lithosphere,
alalLorenz
[1955],
Increases.

Higher
Density

Lower Density




Initial State: Horizontal shortening _
Shortening and

(— Thickening of lithosphere
(crust and mantle)

Mantle Lithosphere

Asthenosphere

Crustal Thickening and Surface Uplift,
Mountain or Plateau Building due to removal of Lithospheric Load Removal of
blobs of dense
mantle
lithosphere

(“deblobbing”)

High
Density _ reduces load
Lower Density to base of
Removal of Lithospheric Root lithosphere:
Thickening of Unstable Horizontal Extension and Subsidence and aval I.ab le
Lithospheric Root potential
: energy within
Surface rises, and gt%e
available potential lithosphere
energy powers outward 3la Lorenz’
growth of the plateau Further Lithospheric Thinning, [1955]
and crustal extension and Possibly Volcanism inCreases

within it



Animation by Tanya Atwater

(given to me for my 60t birthday, and hence honoring all of my prejudices, but not necessarily all of the facts)




. Enhanced volcanism.

Removal of mantle lithosphere from
beneath mountain belts and plateaus:
What does this predict?

" - Surf Uplift,
- GeophySICaI eVIdence fOr a due to remog.;lég‘eLitﬁolspheric Load
hot uppermost mantle.

. Outward growth of the range

or plateau. _ .
Removal of Lithospheric Root
. Crustal thinning beneath the  Horizontal Extension and subsidence

high plateau.

. Increase In surface elevation. “

Further Lithospheric Thinning,
and Possibly Volcanism




oung Volcanic Rock (basalt) In
Northern Tibet




Deformation surrounding Tibet beginning at, or since,
~15 Ma, but collision occurred at ~50-40 Ma

80°E 100°E 120°E
1 1 1
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~6 Ma Zhang et al. 2012
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Fang et al. 2003
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Min Shan 7-4 Ma
Kirby et al. 2002
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\Caddick et al. 2007
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Dust-storm and strong wind frequency in northern China:
Spring is the season (not winter or summer)

=

n

o

Ly

b

L
Strong Wind Frequency (%)

Dust QOutbreak Frequency (%)

—
L ¥

1 2 3 - 5 6 7 8 9 10 11 12

White: 1993-2002. Black: 2000-2002 Month _ o
Dust outbreak: bars. Strong winds: circles. [Kurosaki and Mikami 2003; Roe 2009]



March-April-May climatology

850-millibar temperature
during major dust storms:

850 mb Temperature (°C)

Dust storms occur
when outbreaks of
cold air from the
Arctic pass over
high terrain in and
near Mongolia (not
Tibet), and storms
grow by lee
cyclogenesis in the
lee of this high

24 April, 1984 8 April, 2001 terrain.

[Roe, Quaternary Research, 2009]




|_ee cyclogenesis

tropopause

surface

Stretching of atmospheric columns causes spin-up (cyclonic

rotation) and promotes development of storms east of the
Mongolian Altay.

Does Tibet have anything to do with loess accumulation?

(from Gerard Roe)
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Relationship of loess deposition over North
China to the Tibetan Plateau and its growth?

1. None at all.

PAHERES



Lithostatic Pressure, Available Potential
Energy, and Force per unit length

Pratt Isostasy

Force per Unit Length Resisting Convergence
(Available Potential Energy)

Lithostatic
Pressure = ST
Force _ 5. Crust Force <
per unit per unit
length L e length —» —  ~_
applied by applied by
< lowlands to | cool hot plateau to hot cool -~
% plateau -<— lowlands —»
0 —» -
Mantle <— — > Mantle
—» Force <
per unit _
< length >
—> Resisting Depth of Compensation  &—

Convergence



Relationship of loess deposition over North
China to the Tibetan Plateau and its growth?

1. None at all.

1 Maybe geodynamlcally A rlse of leet mcreased
the lithostatic pressure (strlctly the force per unit

~ length) that its Ilthosphere applies to Asian

‘ .'..Ilthosphere farther-north, which caused the
--v<..-;':-MongoI|aAItay and Gobi Altay to rise; and made

; ‘Iee cyclogene3|s p033|ble |



Rise of the Mongollan Altay and GObI Altay
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as “geodynamic teleconnections” from Tibet
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Sensible heating over India & Tibet and latent
heating aloft lead to monsoonal circulation

Hot upper Cooler (but not cold)
troposphere upper troposphere

Indian Summer Monsoon

Cross-EFquatonial
Circtdation

FPrecipitation and
l atent Heating

<.

From
Molnar
et al.

[1993] North ==
~35%N Equator

Wind Blows from 5E to NW
and Fvaporates Sea Water




Seasonal
Differences
In Winds
over the
Indian

Ocean:
InN summer
(winter)
monsoons,
winds blow

toward the
NE (SW)
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Data: Curry, Ostermann, Guptha, and Ittekkot [1992]; Photo: L. Northcote
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Julian day, from 1 January 1986

G. Bulloides Accumulation

Globigerina bulloides flourishes during the monsoon,
and disappears during the rest of the year.



Age (Ma)

1or

b

Increase In the
fraction of
Globigerina

g | Bulloides In the
/ : Arabian Sea at
— ~8-9 Ma:

| Strengthening of
the Indian
Mmonsoon?

From Kroon, Steens, and

0

R I S S T S T Troelstra [1991]; Prell,
10 20 30 40 50 60 7O &0 Murray, Clemens, and

Percentage of Globigerina Bulloides Anderson [1992] show the

at ODP Site 722 (Arabian Sea) same.



latitude

July 250 hPa temperature
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[Boos and Emanuel 2009]



Elementary monsoon theory: quasi-equilibrium

Maximum ascent rate lies slightly equatorward of maximum
subcloud specific entropy, s,, or moist static energy, h.

T 350 400 450
327 &

296 20

5 10 15 20 25 30 35 40 45
latitude

h=C,T+Lg+gz
~ s,/ T,

[Emanuel, 1995, 2007; R

Emanuel et al., 1994; c.

Lindzen and Hou, 1988; s =(C ln 9 9. =T Dy |7 exp L.g
: . . b eb eb b

Neelin, 2007; Plumb, 2007; 4 p cp];,

Privé and Plumb, 2007]. _. ] i
Figures from Nie, Boos, and Kuang [Journal of Climate, 2010]



Subcloud moist entropy (like moist static energy) (in July):
Sp = (Cpg + dCy) In 6, b, = equivalent potential temperature

50
407
301\

201

40 éo 80 100 120 140
longitude

4400

- 14350

|+ 44300

- 14250

4200

4150

h=C,T+Lqg+gz

The potentially
most unstable
surface air lies
NOT over Tibet,
but over northern
India.

[Boos and Emanuel 2009]
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Present-day
topography

latitude

Importance
of the

. Himalaya,

* but not Tibet.

latitude

" No topography

No Tibet, but

) ) with the
: . Himalaya (and
g “ XY east Africa)
—— o=t [Boos and Kuang 2010]
100 150 | 100 150
longitude longitude longitude
175-450 mb Temperature  subcloud 6, Precipitation and winds:  all for summer

h=C,T+L g+gz
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Kilometers
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cold, dry air low
moist static energy h _.
low subcloud =
moist entropy s,,.

leet prevents that air from |
mixing with the hot, mmsti ()

air over India. h C T_|_L q+ gz

e [BoOS and Emanuel 2009; Boos and Kuang 2010 Chakraborty
et al. 2006; Plumb 2007; Prive and Plumb 2007] .
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moist entropy s,,.
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mixing with the hot, mmsti ()
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e [BoOS and Emanuel 2009; Boos and Kuang 2010 Chakraborty
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Does heating over Tibet
matter for the monsoon?

A test:
correlate most static energy over Tibet
with monsoon rainfall over India

h=C,T+L g+ gz
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Does heating over Tibet
matter for the monsoon?

h=C,T+L g+ gz

A test:
correlate most static energy over Tibet
with monsoon rainfall over India:
Mild success, only in early and late seasons.
Maybe Tibet ought not be ignored,
but it does not seem to be very important.
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Owen Ridge
formed as a
topographic high
at ~ 8-9 Ma

10 Ma: zilch

6-3 Ma: Owen Ridge is fully formed
Frce-d W TR S T U G~
P = B

8 Ma: Owen Ridge emerges



Carbonate Compensation Depth (CCD)

-------- Sediment CaCOj4(%), —— cumulative ocean floor hypsometry (%)
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G. bulloides at 9 Ma and the Indian

monsoon? T ==

1. Big increase In the G
percentage of G. ;
bulloides at 8-9 Ma. ;| .
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G. bulloides at 9 Ma and the Indian

monsoon? T ==

1. Big increase In the G
percentage of G. ;
bulloides at 8-9 Ma. ;| .
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2. Owen Ridge rose /
above the CCD at e
8-9 Ma.
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G. bulloides at 9 Ma and the Indian

monsoon? 'ﬂ

1. Big increase In the % G
percentage of G. \‘é}_
bulloides at 8-9 Ma. s} ’

2. Owen Ridge rose *
above the CCD at / o
8-9 Ma. Hence,
before 8-9 Ma, "l

most G. bulloides
dissolved, but since fh

8-9 Ma, they -
avoided dissolution. °



G. bulloides at 9 Ma and the Indian

monsoon? 'ﬂ

1. Big increase In the % G
percentage of G. \‘é}_
bulloides at 8-9 Ma. s} .

2. Owen Ridge rose *
above the CCD at 8 / o
9 Ma. Hence,
before 8-9 Ma, "l

most G. bulloides
dissolved, but since fh

Alas. G. Bulloides tells -
us nothing — zero -
about monsoon
development at 8-9 Ma.

8-9 Ma, they -
avoided dissolution. °



Upward and outward growth of Tibet since 15-10 Ma

and aridification of NW India since ~10 Ma
80|°E 100|°E 129°E
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-an et al. 2005; Lease et al. 2007
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Simulated rainfall difference (mm/day)
Himalaya minus Himalaya + Tibet
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Effect of a heat source over the Bay of Bengal

Contours of
vertical
component
of velocity EQ
on 477 mbar
surface 30°S

(mid-troposphere)

[Rodwell and
Hoskins, 1996]
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Correlation of July-August rainfall [Xie et al. 2007] over
eastern Asia with July-August Outgoing Longwave
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Radiation (OLR) over Eastern Tibet (red box)
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[Molnar and Rajagopalan, GRL, 2012]
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Connection between eastern Tibet
and NW India (and Pakistan)

. Eastern Tibet grew upward and outward
since ~10 Ma.

. Increased elevations enhanced
condensation and orographic precipitation.

. Latent heating over eastern Tibet sent
Rossby waves westward and induced
descent over NW India.

. Descent of dry air suppressed precipitation,
and led to aridification of NW India.



Upward and outward growth of Tibet since 15-10 Ma

and aridification of NW India since ~10 Ma
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Initial State: Horizontal shortening

Asthenosphere

Crustal Thickening and

Mountain or Plateau Building

Higher
Density

Lower Density

Thickening of Unstable
Lithospheric Root

Surface rises, and
available potential
energy powers outward
growth of the plateau
and crustal extension
within it

Mantle Lithosphere

Shortening and
(— Thickening of lithosphere
(crust and mantle)

Surface Uplift,
due to removal of Lithospheric Load

Removal of
blobs of dense
mantle
lithosphere
(“deblobbing”)
reduces load
to base of
lithosphere:
available
potential
energy, ala
Lorenz [1955],
Increases.

Removal of Lithospheric Root

Horizontal Extension and Subsidence

Further Lithospheric Thinning,
and Possibly Volcanism



Gill-model calculations of the vertical component of
velocity In the mid-tropospere, forced by a heat source
displaced (by ~30°) from the equator [Gill, 1980]
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Jet speed and position
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Winds and Precipitation (mm/day) and
streamlines at 850 mb in an Aquaplanet GCM

(with an ocean surface at ~5000 m over Tibet)
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' ' > In preparation)
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Aquaplanet GCM and observed Precipitation
(mm/day) over China
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How might Tibet, and its growth, affect
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Sources of springtime (March-May) storms:
Note concentration over Mongolia (not Tibet)
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Sensible heating over India & Tibet and latent
heating aloft lead to monsoonal circulation

Hot upper Cooler (but not cold)
troposphere upper troposphere

Indian Summer Monsoon
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Two hypotheses

1. Removal of mantle lithosphere beneath
northern Tibet, tens of millions of years
after India collided with Eurasia, led to
additional surface uplift and a major
change in the distribution of Asian surface
topography.

2. The growth of the Tibetan Plateau has, In
particular near 10 Ma, altered East Asian
climate (to some measureable extent).



Pn speeds across Tibet and surroundings

[McNamara, Walter, Owens, and Ammon, Journal of Geophysical Research,1996]
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. Enhanced volcanism.

Removal of mantle lithosphere from
beneath mountain belts and plateaus:
What does this predict?

" Lateral VariatiOnS in denSity due to remg\sgézycfeL}tjﬁcI)Z?)heric Load

and in seismic wave-speeds.

. Outward growth of the range

or plateau. _ .
Removal of Lithospheric Root
. Crustal thinning beneath the  Horizontal Extension and subsidence

high plateau.

. Increase In surface elevation. “

Further Lithospheric Thinning,
and Possibly Volcanism




Normal faulting in northern Ti
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. Enhanced volcanism.

Removal of mantle lithosphere from
beneath mountain belts and plateaus:
What does this predict?

" Lateral VariatiOnS in denSity due to remg\gg%cfeL}tjﬁcI)Z?)heric Load

and in seismic wave-speeds.

. Outward growth of the range

or plateau. _ |
Removal of Lithospheric Root
. Crustal thinning beneath the  Horizontal Extension and subsidence

high plateau.

. Increase In surface elevation. “

Further Lithospheric Thinning,
and Possibly Volcanism







Total crustal Shortening Is at
least 50 km, but no more than
~200 km

(SRTM data, plotted by Jean-Daniel Champagnac)
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Emergence of the Southern Gonghe Nanshan
between 10 and 7 Ma

[W. H. Craddock, E. Kirby, and Zhang Hui-Ping, Lithosphere, 2011]
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Upward and outward growth of high Tibetan terrain
since 15-10 Ma
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. Enhanced volcanism.

Removal of mantle lithosphere from
beneath mountain belts and plateaus:
What does this predict?
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and in seismic wave-speeds.
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. Increase In surface elevation. “
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GPS velocities relative to India
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GPS velocities relative to Shuang Hu in the middle of Tibet
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Ongoing strain in Tibet, from GPS
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Initial State: Horizontal shortening

Asthenosphere

Crustal Thickening and

Mountain or Plateau Building

Higher
Density

Lower Density

Thickening of Unstable
Lithospheric Root

Surface rises, and
available potential
energy powers outward
growth of the plateau
and crustal extension
within it

Mantle Lithosphere

Shortening and
(— Thickening of lithosphere
(crust and mantle)

Surface Uplift,
due to removal of Lithospheric Load

Removal of
blobs of dense
mantle
lithosphere
(“deblobbing”)
reduces load
to base of
lithosphere:
available
potential
energy, ala
Lorenz [1955],
Increases.

Removal of Lithospheric Root

Horizontal Extension and Subsidence

Further Lithospheric Thinning,
and Possibly Volcanism
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Removal of mantle lithosphere from
beneath mountain belts and plateaus:
What does this predict?
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Removal of Lithospheric Root
. Crustal thinning beneath the  Horizontal Extension and subsidence

high plateau.

. Increase In surface elevation. “

Further Lithospheric Thinning,
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Tibet Paleo-elevations
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Sinee ~15-10 Ma, [hm@% terrain = Gobi Altay,

Tien Shan, @ilian Shan, easterm Tﬁbo‘& = has risen.
2. Sinee ~15-10 Ma, the Tibetan Plateau has
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Sources of water:

Today, half of 580 in
northern Tibet comes from

the north!

What was its source at
40-30 Ma”?

[Bershaw, Penny, and Garzione,
Journal of Geophysical Research, 2012]



. Enhanced volcanism.

Removal of mantle lithosphere from
beneath mountain belts and plateaus:
What does this predict?

" Lateral VariatiOnS in denSity due to remg\gg%cfeL}tjﬁcI)Z?)heric Load

and in seismic wave-speeds.

. Outward growth of the range

or plateau. _ .
Removal of Lithospheric Root
. Crustal thinning beneath the  Horizontal Extension and subsidence

high plateau.

. Increase Iin surface elevation?“

Further Lithospheric Thinning,
and Possibly Volcanism




. Enhanced volcanism.

Removal of mantle lithosphere from
beneath mountain belts and plateaus:
What does this predict?

" Lateral VariatiOnS in denSity due to remg\gg%cfeL}tjﬁcI)Z?)heric Load

and in seismic wave-speeds.

. Outward growth of the range

or plateau. _ .
Removal of Lithospheric Root
. Crustal thinning beneath the  Horizontal Extension and subsidence

high plateau.
. Increase In surface elevation?

Maybe nOt’ bUt teStS are nOt Further Lithospheric Thinning,
yet convincin g. and Possibly Volcanism




Regardless of what processes
(crustal thickening and/or
removal of mantle lithosphere),
did and, If so, how did the growth
of high topography affect climate
In Asia, and In particular the
Indian Monsoon?
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Potassium rich, rich in other
Incompatible elements, and with
high 87Sr/86Sr (for mantle rock).
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Potassium rich, rich in other
Incompatible elements, and with
high 87Sr/86Sr (for mantle rock).
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How might Tibet, and its growth,
affect climate, and paleoclimate?

1. Loess plateau — dust? Maybe, but only via
a geodynamic teleconnection.

2. Rainfall over South China?
Mechanically!

3. Rainfall (aridification) over NW India?
Maybe, and if so, thermally, via a Gill-
Model teleconnection.

4. Monsoon rainfall, in general, over India?
Thermally, only in early and late seasons.




Emergence of the northern Qilian Shan at ~ 9 Ma

[Zheng Dewen, Marin Clark, Zhang Peizhen, Zheng Wenjun, and
Ken Farley, Geosphere, 2010]
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Emergence of the Liupanshan at ~ 8 Ma
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[Zheng Dewen et al., EPSL, 2007]




Fission Track ages: Liupanshan
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Fission Track ages: Liupanshan
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Indian Ocean
Sea-Surface
Temperature

During summer
monsoons

(June-August),
northeastward
(southeasterly) winds
blow the surface
water away from the
__ o, coast and draw deep,

g cold, nutrient-rich

24.0 27.0 30.0 water to the surface

-l _ [Rixen, Haake, & Ittekot 2000]
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Heating over Tibet and the South Asian
Monsoon: are they related at all?

40°N

70°N 80°N 90°E 100°E

Moist static energy over Tibet h=C,T+Lg+gz



Correlation of
moist static energy
over Tibet
with wind speeds

_ate season
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Increase In the
fraction of
Globigirina

g | Bulloides In the
/ : Arabian Sea at
— ~8-9 Ma:

| Strengthening of
the Indian
monsoon?

From Kroon, Steens, and

0

R I S S T S T Troelstra [1991]; Prell,
10 20 30 40 50 60 7O &0 Murray, Clemens, and

Percentage of Globigirina Bulloides  Anderson [1992] show the

at ODP Site 722 (Arabian Sea) same.
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Summary

. Tibet's rock started to deform at collision.

. A big change occurred near 10-15 Ma
(outward expansion of the plateau, normal
faulting, and tilting of its eastern flank.)

. Removal of mantle lithosphere beneath
northern Tibet can account for these
changes. It passes tests (so far).

. A rise of Tibet may have affected regional
climate, but that effect is more subtle than
many, certainly |, have thought.
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GSA Bulletin, 2011]
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Deformation surrounding Tibet beginning at, or since,
~15 Ma, but collision occurred at ~45 Ma
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[Elliott, Walters, England, Jackson, Li, and Parsons 2010]
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Deformation surrounding Tibet beginning at, or since,
~15 Ma, but collision occurred at ~45 Ma
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Francis Birch
Elasticity and constitution of the Earth’s interior,
Journal of Geophysical Research, 57, 227-286, 1952.

“Unwary readers should take warning that ordinary language
undergoes modification to a high-pressure form when applied to
the interior of the earth; a few equivalents follow:

High-pressure form:  Ordinary meaning:

Certain Dubious

Undoubtedly Perhaps

Positive Proof Vague Suggestion
Unanswerable Argument Trivial Objection

Pure lron Uncertain Mixture of all

of the Elements



An earthguake seismologist’s view of
time in Pre-Pliocene paleoclimate

10 Ma =5 Ma
and
10 Ma = 15 Ma
In addition to
10 Ma=10+1 Ma



Owen Ridge
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Calcite
Compensation
Depth (CCD)

~ 8-9 Ma
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Jet speed and position
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Winds and Precipitation (mm/day) and
streamlines at 850 mb in an Aquaplanet GCM

(with an ocean surface at ~5000 m over Tibet)
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[Takahashi

and Battisti
2 e ts 71 2007] (but still
' ' > In preparation)
m : - { Reproduced by Mplnar,
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Aquaplanet GCM and observed Precipitation
(mm/day) over China
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1. Jet is forced
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southwesterly componentf ==
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Aquaplanet GCM and observed Precipitation
(mm/day) over China
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Sensible heating over India & Tibet and latent
heating aloft lead to monsoonal circulation
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Indian Summer Monsoon
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Elementary monsoon theory: quasi-equilibrium

Maximum ascent rate lies slightly equatorward of maximum
subcloud specific entropy, s,, or moist static energy, h.
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Elementary monsoon theory: quasi-equilibrium

Maximum ascent rate lies slightly equatorward of the locus of
maximum subcloud specific entropy or moist static energy:.

h=C,T+L g+ gz

[Emanuel, 1995, 2007; —_—
s, =C,Ind,,

Emanuel et al., 1994;
Neelin, 2007; Plumb, 2007;
Privé and Plumb, 2007]. (from Nie, Boos, and Kuang [Journal of Climate. 2010])



Elementary monsoon theory: quasi-equilibrium

Maximum ascent rate lies slightly equatorward of the locus of
maximum subcloud specific entropy or moist static energy.
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Subcloud moist entropy (like moist static energy) (in July):
Sp = (Cpg + dCy) In 6, b, = equivalent potential temperature

h=C,T+Lg+gz
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The potentially
most unstable
surface air lies
NOT over Tibet,
but over northern
India.

[Boos and Emanuel 2009]
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Does heating over Tibet matter
for the Indian monsoon?

A test:
correlate most static energy over Tibet
with monsoon rainfall over India

h=C,T+L g+ gz
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Correlation of July-August rainfall [Xie et al. 2007] over
eastern Asia with July-August Outgoing Longwave
Radiation (OLR) over Eastern Tibet (red box)
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Does heating over Tibet matter
for the Indian monsoon?

h=C,T+L g+ gz

A test:
correlate most static energy over Tibet
with monsoon rainfall over India:
Mild success: only In early and late
seasons.
Tibet does not seem to be very important.
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How might Tibet, and its growth,
affect climate, and paleoclimate?

. Loess plateau — dust?
Maybe, but only geodynamically.

. Rainfall over South China?
Mechanically!

. Rainfall (aridification) over NW India?
Maybe, and if so, thermally.

. Monsoon rainfall, in general, over India?
hermally, only in early and late seasons.
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Heating over Tibet and the South Asian
Monsoon: are they related at all?

40°N

70°N 80°N 90°E 100°E

Moist static energy over Tibet h=C,T+Lg+gz



Data: Curry, Ostermann, Guptha, and Ittekkot [1992]; Photo: L. Northcote
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G. Bulloides Accumulation

Globigerina bulloides flourishes during the monsoon,
and disappears during the rest of the year.



Age (Ma)

1or

b

Increase In the
fraction of
Globigirina

g | Bulloides In the
/ : Arabian Sea at
— ~8-9 Ma:

| Strengthening of
the Indian
monsoon?

From Kroon, Steens, and

0

R I S S T S T Troelstra [1991]; Prell,
10 20 30 40 50 60 7O &0 Murray, Clemens, and

Percentage of Globigirina Bulloides  Anderson [1992] show the

at ODP Site 722 (Arabian Sea) same.



Correlation of
moist static energy
over Tibet
with wind speeds
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Correlation of moist static

22

energy over Tibet
with wind speeds
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Deformation surrounding Tibet beginning at, or since,
~15 Ma, but collision occurred at ~45 Ma
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Animation by Tanya Atwater

(given to me for my 60t birthday, and hence honoring all of my prejudices, but not necessarily all of the facts)




Xunhua Basin Sedimentology
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Xiginling (West Qinling) Fault

[Marin Clark,
Ken Farley,
Zheng Dewen,
Wang Zhicai,
and
Alison Duvall,
EPSL, 2010]

® Apatite (U-Th)/He sample (elev (m), age (Ma)) @® >65Ma
E Cenozoic sedimentary basins © 65-31Ma L 23 30 Kilometers
® <31 Ma



Xunhua Basin Magnetostratigraphy
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stratigraphic height (m)

Xunhua Basin Magnetostratigraphy
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Xunhua Basin Sedimentation Rates

Variations in sediment accumulation rate
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Tilted and folded late Miocene-early Pliocene sedimentary rock,
Including growth strata, in the Chaka basin
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[Zhang Hui-Ping, William H. Craddock, Richard O. Lease, Wang Wei-tao, Yuan Dao-Yang,
Zhang Pei-Zhen, Peter Molnar, Zheng De-Wen, and Zheng Wen-Jun, Basin Research, 2012]
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Emergence of the Qinghai Nanshan at ~ 6 Ma

[Zhang Hui-Ping, W. H. Craddock, R. O. Lease, Wang Wei-tao, Yuan Dao-Yang,
Zhang Pei-Zhen, P. Molnar, Zheng De-Wen, and Zheng Wen-Jun, Basin
Research, 2011]
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Simple history of the Chaka Basin and Qinghal Nanshan

—

Chaka—Gonghe, Qinghai basin complex

Qinghai basin

Elevation

[Zhang Hui-ping et al., Basin Research, 2012]



Interim Summary

1. Active faulting, associated with north-
south shortening in northern Tibet,

began shortly after collision [Clark et al.,

2010; Dupont-Nivet et al., 2004; Duvall et al., 2011;
Ritts et al., 2004; Yin et al., 2007, 2008].

2. Such shortening continued until ~22 Ma,

If not somewhat more recently [Clark et al.,
2010; Lease et al., 2011, 2012].

3. Such shortening, at low rates of a few
mm/yr, ought not be a surprise given the
width of the indentor [Dayem et al., 2009].



Stages In the Growth of Tibet

. Before collision, at ~45 Ma, a narrow high range
like the present-day Andes (apparently) bounded
southern Eurasia.

. The Himalaya has been built by slices of Indian
crust thrust atop the Indian subcontinent.

. Since Collision, India has penetrated steadily into
Eurasia, shortening and thickening Asian crust
to build the wide high Tibetan Plateau.

. Near ~15-10 Ma, a change took place; the plateau
started to collapse, spread apart, and (presumably)
subside slowly (perhaps because of removal of mantle
lithosphere that took a load off the bottom).
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Intermediate-depth earthquakes
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S-wave residuals from Tibetan earthquakes
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Folding
South of
India, on
free-air

gravity map
Work of Bull, Krisha, and

Scrutton
(from Bull's webpage)




Geoid & Gravity Anomalies over Folds in the

Indian Ocean Lithosphere
[Weissel, Anderson, & Geller, 1980]
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Folds Drilled by the Ocean Drilling Project
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[Cochran,
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Present-day GPS Velocities
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Brief Digression: Shear-wave
splitting and anisotropy

Orientations of present-day strain rates
match orientations of fast quasi-S
waves In shear wave splitting.

Thus, the uppermost crust and the upper
mantle seem to deform together.
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Normal faulting
and E-W crustal
extension occur
... throughout Tibet;
thrust faulting
and crustal
shortening occur
on the
surrounding
flanks.

A high plateau
cannot be built
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[Elliott, Walters, England, Jackson, Li, and Parsons 2010]
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Lithostatic Pressure, Available Potential
Energy, and Force per unit length
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Upper
mantle

seismic

wave
speeds

from Ren and Shen

[2008]
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Upper mantle seismic wave speeds

Low speeds
beneath
Tibet at
100 km
associated
with warm
material

High speeds
beneath the
edges of
Tibet at
200 km
associated
with cold
material

: : : [Li, van der Hilst,
\O°E 105°E TE 6 : ! I00°E  105°E Meltzer, and
Engdahl, 2008]




Upper mantle seismic wave speeds
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Upper mantle seismic wave speeds
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How does Tibet affect the South
Asian Monsoon?

It blocks flow, from the north, of cold, dry air, and
hence with low moist static energy h or low
subcloud moist entropy s,. Tibet prevents that air
from mixing with the hot, moist air over India.

Thus, Tibet (the Himalaya) enables a local maximum
In h or s, to develop over India.

[Boos and Emanuel 2009; Boos and Kuang 2010; Chakraborty et al. 2006;
Plumb 2007; Privé and Plumb 2007]



How does Tibet affect the South
Asian Monsoon?

It blocks flow, from the north, of cold, dry air, and
hence with low moist static energy h or low
subcloud moist entropy s,. Tibet prevents that air
from mixing with the hot, moist air over India.

Thus, Tibet (the Himalaya) enables a local maximum
In h or s, to develop over India.

The Himalaya is necessary for a strong South Asian
Monsoon, but a high wide Tibetan Plateau is not
necessary; a long, narrow mountain range, the
Himalaya (if not a punier range) would suffice.

[Boos and Emanuel 2009; Boos and Kuang 2010; Chakraborty et al. 2006;
Plumb 2007; Privé and Plumb 2007]



Heating near the equator, evaporation, and
latent heating lead to meridional circulation

Cooler (but not cold) Hot upper
upper troposphere troposphere
Hadley Circulation

Corialis Effect
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Francis Birch,

Elasticity and constitution of the Earth’s interior,
Journal of Geophysical Research, 57, 227-286, 1952.

“Unwary readers should take warning that ordinary language
undergoes modification to a high-pressure form when applied to
the interior of the earth; a few equivalents follow:

High-pressure form: Ordinary meaning:
Certain Dubious
Undoubtedly Perhaps
Positive Proof Vague Suggestion
Unanswerable Argument  Trivial Objection
Pure lron Uncertain Mixture

of all of the Elements

5Ma =10 Ma =15 Ma



Growth of Tibet and South Asian climate

. Tibet apparently grew steadily since collision with India at ca.
45 Ma, but underwent a change near 15-10 Ma, when it
abruptly began to grow outward, especially eastward, may have
risen ~1000 m, and then began to collapse.

Paleoclimate data suggest changes in South Asian climate at
approximately the same time (or a little more recently).
Recent work suggests that the Tibetan Plateau plays a minor
role in effecting a strong South Asian monsoon; only a narrow
mountain range, the Himalaya is necessary.

By analogy with Rodwell and Hoskins’s [1996] suggestion that
diabatic heating over the Bay of Bengal induces subsidence and
warming over the Sahara, perhaps the growth of eastern Tibet
at ca. 10 Ma induced subsidence over NW India and
aridification there (a weaker monsoon).

Maybe heating over Tibet does affect the strength of the
monsoon, but apparently only in the early and late seasons.



Elementary monsoon theory: quasi-equilibrium

Maximum ascent rate lies
slightly equatorward of the
locus of maximum

- = a
I
[
v subcloud specific entropy
I
l
I

or moist static energy.

[Emanuel, 1995, 2007; Emanuel et
al., 1994; Neelin, 2007; Plumb, 2007;

- Privé and Plumb, 2007].

(from Nie, Boos, and Kuang [Journal of Climate. 2010])



Elementary monsoon theory

Maximum ascent rate lies slightly equatorward of the locus
of maximum subcloud specific entropy or moist static

energy.
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blue) [Bordoni and Schneider, Nature Geosci. 2008]
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Differences
In Winds
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Ocean:
InN summer
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Indian Ocean
Sea-Surface
Temperature

During summer
monsoons

(June-August),
northeastward
(southeasterly) winds
blow the surface
water away from the
__ o, coast and draw deep,

g cold, nutrient-rich

24.0 27.0 30.0 water to the surface

-l _ [Rixen, Haake, & Ittekot 2000]
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Sources of water:
Half of 180 in northern Tibet comes from the north!

A
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[Bershaw, Penny, and Garzione 2012]



An extrapolation of present-day strain rates to 15-10 Ma

gives a drop of ~500 m In the mean elevation of Tibet
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Heating over Tibet and
Northern India

Thin solid line: Temperature difference, 10-
35°N — 10°N-15°S
[Goswami and Xavier, GRL, 2005]
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Monsoon onset and withdrawal
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Thin solid line: Temperature difference, 10-35°N — 10°N-15°S

Thick solid line: latitude of zero vorticity

Dashed line: wind shear, 200 mb — 850 mb, 0-15°N
[Goswami and Xavier, GRL, 2005]
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(b)

Gill model calculations,
based on zillions of
assumptions, of surface

(c) L@ pressure and vertical
3 “  components of velocity
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2 forced by heat sources
! oo at three different
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Non-dimensional Longitude Based on Gill [1980], from
Molnar and Rajagopalan [2012]
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In Summer, Tibet and surroundings comprise
the hottest place on earth (at 250 millibars)

NCEP/NCAR Reanalysis for 1948-2002
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Presentation Notes
In summer, Tibet is the hottest place on earth (at 250 millibars)


The idea that Tibet rose ~1000 m
(after already having reached 4000 m)

and then began to collapse at
~10 Ma passes several tests, but
maybe fails a more important one.
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Let’s not let defeat stand in our way.



The idea that Tibet rose ~1000 m
(after already having reached 4000 m)

and then began to collapse at
~10 Ma passes several tests, but
maybe fails the most important one.

Let’s not let defeat stand in our way.

So, how might Tibet, and its growth,
affect climate and paleoclimate?



Location Map

with Eocene Faults - Ejgure from Yuan et al. [2013]

pid cooling

Cooling Beneath
Remnant Geomorphic Surface

Work of Marin Clark, Ken Farley, Zheng Dewen, Wang Zhicai, and Alison Duvall [2010]



Direct dating of faulting: West Qinling Fault site
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G’hermochronology Transects)

Figure from Yuan et al. [2013]

Location Map
with Eocene Faults 45

pid cooling

Cooling Beneath
Remnant Geomorphic Surface

Work of Marin Clark, Ken Farley, Zheng Dewen, Wang Zhicai, and Alison Duvall [2010] and
Alison Duvall, Marin Clark, Ben van der Pluijm, and Li Chuanyou [2011]



[Dupont-Nivet et al.,
Tectonics, 2004]
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[Dupont-Nivet et al.
Tectonics, 2004]
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Age: ~2.6 Ma

From Sun Youbin


Presenter
Presentation Notes
This a picture taken from a loess profile in the central loess plateau.  In the field outcrops, the loess-paleosol alternations can be readily identified by the color difference. Basically, the reddish layers are paleosols which formed during the dominant summer monsoon intervals, whereas the yellowish layers are loess horizons which formed under the dominant winter monsoon conditions.  Dashed lines denote the boundary between red clay and overlying loess-paleosol sequences. Note that this lithological transition is almost synchronous with the onset of north hemisphere glaciation around 2.6 Ma.


Loess Magnetostratigraphy:
Beginning of deposition at ~8 Ma
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Dust-storm and strong wind frequency in northern China:
Spring is the season (not winter or summer)
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Jet speed and position
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January Profiles of jet
: speeds
April
June [Schiemann,
Lthi, and
. Schar 2009]
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How might the growth of Tibet have affected
paleoclimate In Asia, at least insofar as we can
measure It and assign Tibet an unimpeachable role?

Maybe not at all.

Alternatively, maybe as we thought (increased temperature over
Tibet leads to a stronger meridional temperature gradient aloft, and
stronger cross-equatorial circulation), but we cannot measure
consequences of this yet (except maybe G. bulloides and strong
winds over the western Arabian Sea).

Perhaps in subtle ways that are clearer with paleoclimate proxies
sampled on Milankovitch timescales (and therefore hard to discern).
Perhaps removal of mantle lithosphere increased potential energy
(per unit area) and hence the force per unit length that Tibet applies
to Is surroundings, so that crust thickened and mountains grew north
of Tibet (which enhanced lee cyclogenesis in Mongolia).

Somehow (?).



Stages In the Growth of Tibet

. Before collision, at ~45 Ma, a narrow high range
like the present-day Andes (apparently) bounded
southern Eurasia.

. The Himalaya has been built by slices of Indian
crust thrust atop the Indian subcontinent.

. Since Collision, India has penetrated steadily into
Eurasia, shortening and thickening Asian crust
to build the wide high Tibetan Plateau.

. Near ~15-10 Ma, a change took place; the Plateau
started to collapse, spread apart, and (presumably)
subside slowly (perhaps because of removal of mantle
lithosphere that took a load off the bottom).
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Heating over Tibet

[Yanali, Li, and Song,
J. Meterol. Soc. Japan, 1992]
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Basic theory (buttressed by calculations) suggests

Maximum ascent rate, should lie slightly equatorward of the
maximum subcloud moist static energy, h [e.g., Neelin
2007],

h=C,T+L g+ gz

or equivalently the maximum subcloud moist entropy, s,
[Emanuel, 1995], R

Pl | Lg
s, =(Cpy+qCp)Inb,; 6,=T| 2| expl —
b ( pd T4 Pl) eb P C,T

or, simply potential temperature for a dry atmosphere [Lindzen and Hou, 1988].

\

Moist static energy and moist entropy vary together.



Interaction of radiative heating over land and
advection of moisture from ocean

i

poleward shift
in b Maximum

i sed
HE R

Poleward

*"‘ LAaMD
DLCEAN

Heating over land increases subcloud moist static energy, h, (or

moist entropy) rapidly in Radiative Convective Equilibrium (RCE).

Advection of cooler, but moist, air from the ocean creates a
maximum in h over the land.

h=C,T+Lg+ gz [Privé and Plumb 2007]

Equatorward




Goswami and Xavier’s onset and

withdrawal dates and the monsoon
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[Rajagopalan and Molnar, Climate Dynamics, 2012]



Tibet Paleo-elevations
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The idea that Tibet rose ~1000 m and
then started to collapse at ~10 Ma
passes a test.

So, how might Tibet, and its growth,
affect climate, and paleoclimate?

1. Loess plateau — dust

2. Rainfall over South China

3. Rainfall (aridification) over NW India
4. Monsoon winds over the Arabian Sea




Interim Summary

1. Widespread accelerated exhumation,
incision, and sedimentation near 15-
10 Ma.
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Interim Summary

1. Widespread accelerated exhumation,

incision, and sedimentation near 15-
10 Ma.

2. Therefore, (presumably) accelerated
crustal deformation and surface uplift.

3. For northeast Tibet, a reorientation of
deformation at 15-10 Ma.



Radial anisotropy In the crust
supports the idea that lateral flow
within the crust redistributes

mass (channel flow).
[Shapiro et al., 2004]

Let’s return to convective removal
of mantle lithosphere
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wave dispersion
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Rayleigh-Love wave difference

In red areas, Love waves require the higher speeds.
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Reorientation of anisotropic crystals

Surface wave dispersion suggests
radial anisotropy: SH
propagates faster than SV.

If anisotropic crystals, like mica
were preferentially oriented
so that more of them were

flat than vertical, SH would
propagate faster than SV.
Horizontal extension and crustal

thinning could induce such a
preferred orientation.

[Shapiro et al., 2004]
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Convective Removal of mantle lithosphere

1. Passes one test: predicts an increased outward force
per unit length, which leads both to a switch from
crustal thickening to crustal thinning and to an
outward growth of plateau.



The deep structure of Tibet



Tibetan deep structure

. Thick crust everywhere (Airy isostasy).

. but, thicker in the south (70-75 km) than
In the north (60-65 km)

. and lower P- and S-wave speeds in the
mantle of northern than southern Tibet.

. Therefore, hotter in the north than south.

. and part of the high elevation of northern
Tibet Is due to a hot uppermost mantle,

. consistent with removal of mantle
lithosphere.



Convective Removal of mantle lithosphere

1. Passes one test: predicts an increased outward force
per unit length, which leads both to a switch from
crustal thickening to crustal thinning and to an
outward growth of plateau.

2. Passes a second test: also predicts marked lateral
variations in upper mantle structure.
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1. Passes one test: predicts an increased outward force
per unit length, which leads both to a switch from
crustal thickening to crustal thinning and to an
outward growth of plateau.

2. Passes a second test: also predicts marked lateral
variations in upper mantle structure.

3. Removal of mantle lithosphere also predicts an
Increase in surface elevation of ~1000 m (not the
whole 5000-m present day mean elevation) of the
plateau.



Convective Removal of mantle lithosphere

1. Passes one test: predicts an increased force per unit
length, which leads both to a switch from crustal
thickening to crustal thinning and to an outward
growth of plateau.

2. Passes a second test: also predicts marked lateral
variations in upper mantle structure.

3. Removal of mantle lithosphere also predicts an
Increase in surface elevation of ~1000 m (not the
whole 5000-m mean elevation) of the plateau.
Ignoring uncertainties of 1000 m, removal of
lithosphere fails this test, at least for southern Tibet.
Maybe northern Tibet rose 1000 m since 15 Ma.



Animation by Tanya Atwater

(given to me for my 60t birthday, and hence honoring all of my prejudices, but not necessarily all of the facts)
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Upward and outward growth of high Tibetan terrain
since 15-10 Ma
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Basin-average erosion rate from detrital ages:
Fission tracks (~110°C) and [U-Th]/He (~70°C)
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Upper Mekong

Elevatlon km
d , (km)
[

A

Apatite Fission track
Apatite [U-Th]/He

Relative
Probability

300 200 100 200
Age (Ma)

Steady cooling

Abrupt increase
In cooling rate

[Duvall, Clark, Avdeeyv,
Farley, and Chen, Tectonics,
2012]

412

10

oON A O

Elevation

Elevation
- O (] P (@)] (0s]

Basin-average erosion rate
from detrital ages: Fission
tracks and [U-Th]/He

~110°C  ~70°C
/

/
/
v

8
6
4
2
0

1

00 80 60 40 20 O
Age (Ma)

00 80 60 40 20 O
Age (Ma)

Fission Tracks [U-Th]/He

. 10\\ \
h -
> =08 —=
®© 806 >'§ ]
3 g = e -
- 00,4 s A
Qo2

0.0

100 80 60 40 20 0O
Age (Ma)



Upper Mekong Basin-average erosion rate

evgtion, tkm) from detrital ages: Fission

o= ©
2: [ o o ]
saf . - tracks and [U-Th]/He
(1 8 [ _ 8
o _ o _2n0 . )
Apatite Fission track 6 110°C 70°C  Fission Tracks [U-Th]/He
Apatite [U-Th)/He 4 g // " 0\\ \
2 D > .
c / > =08
w0 200 100 200 S ° 4 ® Bos >§ :
Age (Ma) g 4 g-céOA = r-. ¥ |
. = o AL
Steady cooling w2 O 02
0 0.0 '
100 80 60 40 20 O 100 80 60 40 20 ©
Age (Ma) Age (Ma)
_ 8 1.0 ]'
Abrupt increase ¢ 2 208
in cooling rate T 4 | 8006 !
s 55{3‘14 — !
w2 3a02fF _
[Duvall, Clark, Avdeeyv, 0 | 0.0 —
Farley, and Chen, Tectonics, 100 80 60 40 20 0O '100 80 60 40 20 0

2012]
Age (Ma) Age (Ma)



Isostasy: Archimedes’ Principle applied to the
Earth’s lighter crust over its heavier mantle

~ Surface heights are vertically
exaggerated.

Densities:
Water: 1.0 g/cc
Crust 2.8 g/cc
Mantle 3.3 g/cc

http://deepearthscience.blogspot.com/2013/09/regional-isostasy-supporting-volcano.html



Interim Summary

1. High terrain has existed in Asia for > 50 Myr.
2. At ~15-10 Ma, Tibet rose, maybe ~1000 m.

3. Since ~15-10 Ma, high terrain in surrounding
regions — Tien Shan, Qilian Shan, Mongolian
Altay, etc. — has risen.

4. Since ~15-10 Ma, the surface of the Tibetan
Plateau has dropped ~1000 m (as the E-W
dimension of the Plateau has grown wider).
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2.

How might Tibet, and its growth,
affect climate, and paleoclimate?

1. Monsoon rainfall, in general, over India?
Weakly, only in early and late seasons.

Loess

nlateau — dust? Maybe, but only via

a geodynamic teleconnection.

. Rainfa

| (aridification) over NW India?

Maybe, and If so, via a Gill-Model
teleconnection. But, this means the
monsoon (sensu lato) became weaker, not
stronger, at ~10 Ma.
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