A review of energetic and dynamic theories of monsoons

William Boos May 18, 2015 Yale

contributions from: John Hurley, Ravi Shekhar, Trude Storelvmo Financial support:

Sept. 4, 2014 Terra/MODIS true color reflectance from NASA's EOSDIS Worldview

The global monsoon

Globally, a large fraction of rain falls in monsoon regions during solstice seasons

December-February

An idealized view of monsoons

- · precipitation occurs in ascending air in summer hemisphere
- · circulation is closed by cross-equatorial flow and descent in winter hemisphere
- · reversal of typical "trade winds" in summer hemisphere

This 2D view hides much complexity, but accurately describes zonal mean structure

Going beyond the descriptive: how can we *understand* the variability of monsoons?

Limit our focus to seasonal-mean behavior:

- Interannual variability (2002 drought in India)
- Decadal variability (1970s-80s Sahel drought; past 30-year drying trend in East Africa)
- Response to anthropogenic forcings (greenhouse gases, aerosols, land use change)
- Paleoclimate variability (mid-Holocene North African humid period)

How to think about monsoon circulations?

i.e. given a forcing, how will the precipitating circulation respond? Dominant categories of theory:

Surface temperature gradients drive flow wrong

- Convective quasi-equilibrium mechanistic but diagnostic
- Vertically integrated atmospheric energy budget prognostic but not mechanistic

Disproof of idea that surface temperature gradients drive flow

Data: GHCN rainfall & ERA-Interim nearsurface air temperature

Black contours surround regions significant at 5% level

Hurley & Boos (2013)

How to think about monsoon circulations?

i.e. given a forcing, how will the precipitating circulation respond? Dominant categories of theory:

Surface temperature gradients drive flow wrong

Convective quasi-equilibrium: a modern way to think about convectively coupled large-scale flow

- Moist convection does not act as "heat source" for large-scale flow, but maintains free-troposphere near moist adiabat
- Changes in free-tropospheric temperature are in equilibrium with changes in subcloud entropy:

height

Convective quasi-equilibrium monsoons

Convective quasi-equilibrium framework describes South Asian summer mean state

July climatology Contours: 200-400 hPa temperature (K) Colors: surface air moist static energy ($c_p T + g_z + L_v q$), in K)

Data: ERA-Interim

Boos & Hurley (2013)

Convective quasi-equilibrium framework is also consistent with South Asian interannual variability

Data: GHCN rainfall & ERA-Interim nearsurface equivalent potential temperature

Hurley & Boos (2013)

Convective quasi-equilibrium framework is also consistent with South Asian interannual variability

regressions on South Asian monsoon rainfall of near-surface ...

Data: GHCN rainfall & ERA-Interim T, q, moist static energy

Hurley & Boos (2013)

How to think about monsoon circulations?

i.e. given a forcing, how will the precipitating circulation respond? Dominant categories of theory:

- Surface temperature gradients drive flow wrong
- Convective quasi-equilibrium mechanistic but diagnostic diagnostic

 Vertically integrated atmospheric energy budget prognostic but not mechanistic

Atmospheric meridional overturning circulations transport energy

Precipitation peak shifts in response to an imposed high latitude energy source

GCMs & paleo proxies show that high-latitude thermal forcings can produce ITCZ shifts

colors = surface temperature anomaly, contours = precipitation anomaly

This works quantitatively for a variety of forcings in an idealized beta-plane model

Precipitation maximum and energy flux equator generally shift together

But energetic feedbacks are just as large as the imposed forcing

Summary

- Convective quasi-equilibrium and the vertically integrated atmospheric energy budget can both be used to understand the response of monsoons to forcings:
 - interannual variability (enhanced land-ocean h contrast = more rain)
 - ITCZ shifts toward an applied energy source, but there are large energetic feedbacks
- An energetically closed simple model & a GCM show that monsoon strength exhibits no threshold response to a broad range of forcings