

Another look at it

- De-seasonalize observational records from each site
- Split observations based on hemisphere
- Bootstrap hemispheric averages and uncertainties

Data from NOAA/ESRL^{1,2,3}, U. Heidelberg², UCl², UW², & GAGE/AGAGE 1 = CH₄, 2 = δ^{13} CH₄, 3 = CH₃CCl₃

Methylchloroform

- Used as solvent and insecticide prior to the Montreal Protocol (is also ozone depleting substance)
- Emissions phased out in 1989

1,1,1-Trichloroethane

Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl Turner, Frankenberg, Wennberg, Jacob (in press, PNAS)

Can use a simple 2-box model:

 $\frac{\partial [X]_N(t)}{\partial t} = E_{X,N}(t) - k_{[X]}[OH]_N(t)[X]_N(t) + \frac{[X]_S(t) - [X]_N(t)}{\tau_{\rm NS}}$ $\frac{\partial [X]_S(t)}{\partial t} = E_{X,S}(t) - k_{[X]}[OH]_S(t)[X]_S(t) + \frac{[X]_N(t) - [X]_S(t)}{\tau_{\rm NS}}$

Jacobians

Jacobians

Jacobians

Fits

Formal Inversion

Minimize

$$(\mathbf{x} - \mathbf{x}_{\mathbf{a}})^T \mathbf{S}_{\mathbf{a}}^{-1} (\mathbf{x} - \mathbf{x}_{\mathbf{a}}) + (\mathbf{y} - \mathbf{K}\mathbf{x})^T \mathbf{S}_{\varepsilon}^{-1} (\mathbf{y} - \mathbf{K}\mathbf{x})$$

State vector x (size 2940) includes: NH and SH emissions each month isotopic composition of those OH scaling factor for each month

Measurement vector y (size 2280) size includes: NH and SH aby and ances NH and SH isotopic composition NH and SH MCF abundances

Prior run

Posterior (non-linear inversion)

Flux Inversion — CH₄ lifetime fixed

With OH fitted (through MCF measurements)

With OH fitted (through MCF measurements)

With OH fitted (through MCF measurements)

Is OH variation realistic?

Previous publications find a similar behavior

Holmes et al

Fig. 1. Methane lifetime due to oxidation by tropospheric OH $(\tau_{CH_4 \times OH})$ simulated by each CTM (solid lines) and reconstructed from the 5-parameter model (dashed lines). The parameters are air temperature, water vapor, ozone column, lightning NO_x emission, and biomass burning emission. Parameter values for each CTM are

Mode times — Prather

Assume that V is a solution for a generic operator A, dV/dt = A[V], then the continuity equation for a perturbation δV can be derived as

$$\frac{\mathrm{d}\delta V}{\mathrm{d}t} = \frac{\mathrm{d}[V + \mathrm{d}V]}{\mathrm{d}t} - \frac{\mathrm{d}V}{\mathrm{d}t} = A[V + \delta V] - A[V] = J_V \cdot \delta V + \mathrm{order}(\delta V^2),$$

where the Jacobian matrix J of the operator A is the first term in the Taylor expansion of $A[V+\delta V]$ evaluated at V, i.e. the linearized system (e.g. Prather 1996, 2002; Manning 1999). The Jacobian matrix has dimension $m \times m$, where m is the number of variables. Species are inherently discrete, and adopting a discrete spatial grid gives us a finite number of variables across (x, y, z, n). For discussion of the continuum, see §8.

If the perturbation δV is an eigenvector of J_V with eigenvalue λ , then

$$\frac{\mathrm{d}\delta V}{\mathrm{d}t} = J_V \cdot \delta V = \lambda \delta V,$$

Coupled OH Chemistry — Prather

Consider a simplified model of the $\rm CH_4-CO-OH$ chemical system as having three reactions

- (i) $CH_4 + OH \Rightarrow \dots \Rightarrow CO$ $R_5 = k_5 [CH_4] [OH]$ $k_5 = 1.266 \times 10^{-7} \text{ s}^{-1} \text{ ppt}^{-1}$
- (ii) $CO + OH \Rightarrow \cdots$ $R_6 = k_6 [CO][OH]$ $k_6 = 5.08 \times 10^{-6} \text{ s}^{-1} \text{ ppt}^{-1}$
- (iii) $OH + X \Rightarrow \cdots$ $R_7 = k_7 [X][OH]$ $k_7 [X] = 1.062 \text{ s}^{-1}$,

$$\frac{\mathrm{d}[\mathrm{CH}_4]}{\mathrm{d}t} = S_{\mathrm{CH}_4} - R_5$$

$$\frac{\mathrm{d}[\mathrm{CO}]}{\mathrm{d}t} = S_{\mathrm{CO}} + R_5 - R_6$$
$$\frac{\mathrm{d}[\mathrm{OH}]}{\mathrm{d}t} = S_{\mathrm{OH}} - R_5 - R_6 - R_7.$$

 $O_3 + hv \ (\lambda < 330 \text{ nm}) \rightarrow O(^1\text{D}) + O_2,$ $O(^1\text{D}) + H_2\text{O} \rightarrow 2\text{OH}.$

Prather

 δ [CH₄](t) $\approx +0.995 e^{-t/13.6} + 0.005 e^{-t/0.285} ppb,$

Prather

^{120°}W 0° 120°E 120°E 60°N EQ 60°S

Table 1. Global, annual mean tropospheric source and sink fluxes of OH (Tmol yr^{-1}). Sources and sinks are also specified for the boundary layer and free troposphere.

0.5 0.2 0.1 0.05

Sources/sinks	BL	FT	Troposphere
$O(^{1}D)+H_{2}O$	12.5	71.5	84.0 (33%)
NO+HO ₂	10.4	66.2	76.6 (30%)
$O_3 + HO_2$	3.5	30.9	34.4 (14%)
$H_2O_2 + hv$	2.3	22.5	24.8 (10%)
OVOCs, ROOH+hv	6.6	24.8	31.4 (13%)
Total OH sources	35.3	215.9	251.2
$OH+HO_{y}^{1}$	4.8	41.4	46.2 (18%)
$OH+NO_{v}^{2}$	0.8	3.3	4.1 (1.5%)
OH+CH ₄	4.1	25.7	29.8 (12%)
OH+CO	9.6	88.2	97.8 (39%)
OH+other $C_1 VOC^3$	5.7	31.3	37.0 (15%)
$OH+C_{2+}VOC^4$	10.3	24.4	34.7 (14%)
Rest	0.4	1.2	1.6 (0.5 %)
Total OH sinks	35.7	215.5	251.2

¹ H₂, O₃, H₂O₂, radical–radical reactions. ² NO, NO₂, HNO₂, HNO₃, HNO₄, ammonia, N-reaction products. ³ VOC with one C atom (excl. CH₄), incl. CH₃OH, C₁-reaction products. ⁴ VOC with \geq 2 C atoms, C₂₊-reaction products.

Lelieveld et al, 2016

Unit: 10⁵ molecules cm³ OH

Lelieveld et al, 2016

Figure 11. Zonal annual mean OH concentrations calculated in the reference simulation (black) and by successively excluding OH recycling through the NO_x , O_x and OVOC mechanisms.

Holmes et al

Variable ^b	UCI CTM	Oslo CTM3	GEOS-Chem	Literature ^c	Adopted ^d
Chemistry-climate interactions					
Air temperature ^e Water vapor ^e	-3.9 -0.32	-2.8 -0.29	-2.2 -0.34		$-3.0 \pm 0.8 \\ -0.32 \pm 0.03$
<i>Ozone column</i> , 40° S–40° N	+0.66	+0.43 ^f	+0.61	$+0.28 - 0.76^{g}$ [1] $+0.28^{h}$ [2] $+0.27^{g}$ [3]	$+0.55 \pm 0.11$
Lightning NO _x emissions	-0.14	-0.11	-0.24	-0.08-0.16 [4]	-0.16 ± 0.06
Biomass burning emissions ⁱ	+0.021	+0.013 +0.003 ^j	+0.017		$+0.020 \pm 0.015$
CH ₄ abundance ^k	+0.363	+0.307	+0.274	+0.32 [5] +0.28 ± 0.03 [6]	$+0.31 \pm 0.04$ $(f = 1.34 \pm 0.06)^{1}$
Convective mass flux	-0.036				Ν
Optical depth, ice clouds	+0.013				Ν
Optical depth, water clouds	-0.025			+0.024 [2] -0.075 [3]	Ν
Anthropogenic emissions					
Land NO _x ^m	-0.15	-0.10	-0.16	-0.137 [5] -0.121±0.055 [7]	-0.14 ± 0.03
Ship NO _x	-0.045	-0.048	-0.017	-0.0412 ± 0.01 [8] -0.0374 ± 0.005 [9] -0.047 [10]	-0.03 ± 0.015
Aviation NO _x				-0.014 ± 0.003 [11]	-0.014 ± 0.003
СО	+0.066	+0.050	+0.065	+0.11 [5] +0.074 ± 0.004 [7]	$+0.06 \pm 0.02$
VOC				+0.047 [5] +0.033 ± 0.01 [7]	$+0.04 \pm 0.01$

Table 2. Sensitivity of $\tau_{CH_4 \times OH}$ to climate variables and emissions^a.

^a Sensitivities are reported as $d \ln(\tau_{CH_4 \times OH})/d \ln(F)$ for each variable *F*, based on perturbation tests described in Sect. 3.2.

Murray et al, 2013

Murray et al, 2013

Murray et al, 2013

Parameter, P	<i>R</i> With OH Anomalies ^a	Slope of dOH/dP^b (%/%)	σ in Monthly Anomalies of P^{c} (%)
OH anomalies	1.00	+1.00	3.01
Production anomalies	0.32	$+0.97^{+0.17}_{-0.15}$	3.11
Primary production	0.61	$+1.06^{+0.14}_{-0.13}$	2.85
Water vapor	0.14	$+2.89^{+0.58}_{-5.85}$	1.04
Stratospheric ozone	-0.38	$-4.19^{+0.60}_{-0.71}$	0.72
Tropospheric ozone	0.54	$+1.73^{+0.26}_{-0.71}$	2.92
HO _x recycling	0.47	$+0.93^{+0.14}_{-0.12}$	3.25
Loss anomalies	-0.55	$-0.83^{+0.17}_{-0.22}$	3.64
$k_{\rm CH_4+OH}(T)[\rm CH_4]$	-0.63	$-3.67^{+0.53}_{-0.65}$	0.82
$k_{\rm CO+OH}(T)$ [CO]	-0.56	$-0.52^{+0.10}_{-0.12}$	5.81
Global emission rates			
Lightning	0.63	$+0.18^{+0.03}_{-0.04}$	16.4
Biomass burning ^d	-0.32	$-0.10\substack{+0.02\\-0.03}$	29.5

Table 2. Sensitivity of Simulated IAV in OH to Different Reaction Pathways, Climate Variables, and Emissions

^aPearson correlation coefficient, *R*, between time series of OH percent anomalies and the forcers.

^bSlope of reduced major axis (RMA) regression between monthly percent anomalies in OH and the forcers. Range gives 95% confidence intervals calculated from a bootstrap ensemble with 10³ members.

^cStandard deviation of monthly percent anomalies in tropospheric mean climate variables, reaction rates, and emissions. All values calculated from the simulation using IAV in lightning from LIS.

^dStatistics for fire emissions are calculated using time series of NO_x emission; results are very similar for CO emissions, and negative because fires act as a net sink for OH.

Oman et al Ozone recovery

