

Geologic methane sources Principles, measurements, misconceptions, global emission estimates

Giuseppe Etiope

National Institute of Geophysics and Volcanology, Roma, Italy

- 1. Geologic methane sources: definitions, classifications (what and where)
- 2. Acquisition of methane flux data: building a global flux data-set
- 3. Bottom-up global upscaling (and top-down verifications) uncertainties
- 4. Two key concepts for inverse modelling: isotopic signature and variability
- 5. Improving emission estimates: revision of emission factors and activity
- 6. Geo-emissions in the official inventories (and the fake gas hydrate story)
- 7. Abiotic methane: a newly discovered geo-source

THE THIRD "BREATH" Natural Anthropogenic biochemical sources HERE sources wetlands Fossil CH4 termites methane Wastes GEOSPHER oceans Geologic sources Rice wild fir **Ruminants** wild anima

What is geologic methane

GEOLOGIC METHANE SOURCES

Seepage....a jungle of names

Macroseeps <	Focused flow	Gas seeps (gas only) Oil seeps (gas and oil) Water-gas seeps (bubbling springs or aquifers) Mud volcanoes (gas, water, oil and sediments)
	Diffuse flow	Miniseepage (invisible)
Microseepage	- Diffuse flow (i	nvisible, independent from macroseeps)

TOTAL PETROLEUM SYSTEM

Gas seeps and "eternal" fires

Eternal fires and Zoroastrianism

Azerbaijan (Yanardag)

Baba Gurgur (Iraq) one of the largest oil fields in the world

A natural seep active since >4000 years; probably the "burning fiery furnace" into which Nebuchadnezzar cast the Jews (*Yergin, 1991*).

mentioned by Herodotus, Plutarch, and in the Old Testament's Book of Daniel

CH4 flux

Mud volcanoes

Sedimentary volcanism, 3-phase system : gas-water-sediment

Mud volcanoes – Azerbaijan

Mud volcano eruptions

Macro / mini seepage

Maccalube (Sicily, Italy)

GLOBAL DISTRIBUTION OF SEEPS (from GLOGOS - Global Onshore Gas-Oil seeps database)

Actual global number >10,000 ?

Microseepage: the invisible emission

Global and Planetary Change 72 (2010) 265-274

Microseepage in drylands: Flux and implications in the global atmospheric source/sink budget of methane

```
Giuseppe Etiope <sup>a,b,*</sup>, Ronald W. Klusman<sup>c</sup>
```

Potential microseepage area (Level 1)

(Etiope, 2015)

Sedimentary basins with petroleum provinces

Potential microseepage area (Level 2)

~ 10 million km²

Petroleum field areas

GLOBAL MAP OF GEOLOGIC METHANE EMISSION AREAS

- 1. Geologic methane sources: definitions, classifications (what and where)
- 2. Acquisition of methane flux data: building a global flux data-set
- 3. Bottom-up global upscaling (and top-down verifications) uncertainties
- 4. Two key concepts for inverse modelling: isotopic signature and variability
- 5. Improving emission estimates: revision of emission factors and activity
- 6. Geo-emissions in the official inventories (and the fake gas hydrate story)
- 7. Abiotic methane: a newly discovered geo-source

How to detect and measure gas seepage

CLOSED-CHAMBER METHOD FOR FLUX MEASUREMENT

widely used for soil-respiration, gas fluxes from wetlands,

rice paddies and permafrost

$$Q = \frac{V_{\rm FC}}{A_{\rm FC}} \frac{c_2 - c_1}{t_2 - t_1} \quad \left[\frac{mg}{m^2 * d}\right]$$

 V_{FC} (m³) chamber volume A_{FC} (m²) chamber area $c_1 - c_2$ (mg/m³) methane concentrations at times $t_1 - t_2$ (days).

Closed-chambers used for seepage measurements

New York

Italy

Last week at the La Brea park, Los Angeles

Closed-chambers used for seepage measurements

New solutions for gas seepage investigation

based on a <u>combination of a new generation of portable instruments</u> for the measurement of a wide range of gases (methane, heavier hydrocarbons, CO_2 , H_2 , SO_2 ...)

- Tunable Diode Laser Adsorption Spectrometry (TDLAS)
- Fourier Transform Infra-Red spectrometry (FTIR)
- Semiconductors and infrared sensors
- Closed-chamber systems for gas flux measurements

A LARGE METHANE FLUX DATABASE

Table 6.1	\mathbf{A} :	summary	of	the	main	studies,	with	methane	flux	measurements	from	land-based
natural gas	see	page (hy	droc	arbo	on-ric	h emissie	ons)					

Country	Type of seepage	Reference
Azerbaijan	Gas seeps, mud volcanoes, miniseepage	Etiope et al. (2004), Kopf et al. (2009)
Australia	Gas seeps	Day et al. (2013)
China (PRC)	Microseepage	Tang et al. (2010)
Germany	Microseepage	Thielemann et al. (2000)
Greece	Gas seeps and miniseepage	Etiope et al. (2006, 2013a)
Italy	Gas seeps, mud volcanoes, miniseepage, microseepage	Etiope et al. (2002, 2007a), Etiope and Klusman (2010)
Japan	Mud volcanoes, miniseepage	Etiope et al. (2011a)
Romania	Gas seeps, mud volcanoes, miniseepage	Etiope et al. (2004), Baciu et al. (2008), Spulber et al. (2010), Frunzeti et al. (2012)
Switzerland	Gas seep and miniseepage	Etiope et al. (2010)
Taiwan (ROC)	Mud volcanoes, gas seeps, miniseepage	Yang et al. (2004), Chang et al. (2010), Chao et al. (2010), Hong et al. (2013)
Turkey	Gas seeps, miniseepage, microseepage	Etiope et al. (2011b)
USA—Alaska	Gas seeps	Walter Anthony et al. (2012)
USA—California	Gas seeps	Duffy et al. (2007)
USA—Colorado	Seeps Microseepage	LTE (2007), Klusman and Jakel (1998), Klusman et al. (2000)
USA—Nevada	Microseepage	Klusman et al. (2000)
USA—Wyoming	Microseepage	Klusman et al. (2000)
USA-New York	Gas seep, miniseepage	Etiope et al. (2013b)

A LARGE FLUX DATABASE – Emission factors are today well known

Thousands of flux data from USA, EUROPE, ASIA...

30 onshore MV from Italy, Romania, Azerbaijan, Japan, Taiwan Typical EF 10³ t km⁻² y⁻¹

>80 gas seeps from 15 countries
Individual gas seeps (natural fires, bubbling pools) 10° to 10³ t/y.

> 1000 data in different soil types and countries

Typically **10¹-10²** mg m⁻² d⁻¹ (similar to wetlands),

Hundreds of direct or derived CH4 fluxes in USA, Europe, Asia.... up to **10**² t/y for individual vents

- 1. Geologic methane sources: definitions, classifications (what and where)
- 2. Acquisition of methane flux data: building a global flux data-set
- 3. Bottom-up global upscaling (and top-down verifications) uncertainties
- 4. Two key concepts for inverse modelling: isotopic signature and variability
- 5. Improving emission estimates: revision of emission factors and activity
- 6. Geo-emissions in the official inventories (and the fake gas hydrate story)
- 7. Abiotic methane: a newly discovered geo-source

Upscaling based on emission factor and activity

(EMEP/EEA 2009 Guidelines)

EEA Technical report No 9/2009

ISSN 1725-2237

EMEP/EEA air pollutant emission inventory auidebook 2009 Technical guidance to prepare national emission inventories

SEEPING AREAS TOT. EMISSION = EMISS. FACTOR XNUMBER OF **SEEPS**

Area sources (with microseepage): t km⁻² y⁻¹ or mg m⁻² d⁻¹

Same up-scaling procedures applied to wetlands, rice fields, soil CO₂ respiration, soil CH₄ consumption.....

GLOBAL EMISSION ESTIMATES

Type of seepage	$(Tg yr^{-1})$	References
Gas seeps	3-4	Etiope et al. (2008)
Mud volcanoes	5-10	Etiope and Klusman (2002)
	10.3–12.6	Dimitrov (2002)
	6–9	Etiope and Milkov (2004)
	10-20	Etiope et al. (2011a)
Microseepage	>7	Klusman et al. (1998)
	10-25	Etiope and Klusman (2010)
Marine seepage	18–48	Hornafius et al. (1999)
	10-30 (20)	Kvenvolden et al. (2001)
Geothermal/	1.7–9.4	Lacroix (1993)
volcanic areas	2.5-6.3	Volcanoes not included; Etiope and Klusman (2002)
	<1	Only volcanoes; Etiope et al. (2008)
	2.2–7.3	This work (<i>only volcanoes would be around</i> 0.015 Tg/year)
Total	13–36	Microseepage not included; Judd (2004)
	30–70	Etiope and Klusman (2002)
	45	<i>Lowest microseepage estimate considered;</i> Kvenvolden and Rogers (2005)
	42-64	Best estimate; Etiope et al. (2008)
	30-80	<i>Extended range and top-down verification;</i> Etiope et al. (2008)
	45-76 (60)	Etiope (2012)

 Table 6.3
 Global emissions of methane from geological sources

GEOLOGIC METHANE SOURCES

Geological CH₄

2nd natural CH₄ source ≈10% of total CH₄ source

wastes

CO₂ and CH₄

geo-sources vs. man-made vs. natural

UNCERTAINTIES

- Temporal variability (decadal, centuries...) due to endogenic factors (changes of pressure gradients, tectonics...) limited knowledge for

- mud volcanoes
- submarine seeps (only theoretically estimated)
- microseepage area

Uncertainty is comparable or better than that of other natural sources (EMEP/EEA Guidebook 2009)

TOP-DOWN EMISSION ESTIMATES

Based on ¹⁴C-free, fossil CH₄ in atmosphere

(Etiope et al 2008; Lassey et al. 2007)

¹⁴C-free 30% of tot. emiss. (580 Tg/y ?) = 175 Tg/y

geo-CH4 = 175 – fugitive (100?) = 75 Tg/y

Atmospheric box models

Schwietzke et al (2016)

modeling based on two independent datasets:(a) CH₄ and isotopic data from ice-core records(b) current day atmospheric CH₄ and isotopic data

(a) suggests geo-CH4 : 30-70 (50) Tg/y

(b) suggests total fossil fuel (fugitive + geo): 200 Tg/y If fugitive=150 Tg/y, geo-CH4= 50 Tg/y If fugitive=100 Tg/y, geo-CH4=100 Tg/y

Overall geo-CH4 emissions could be in the range 30-100 Tg/y.

- 1. Geologic methane sources: definitions, classifications (what and where)
- 2. Acquisition of methane flux data: building a global flux data-set
- 3. Bottom-up global upscaling (and top-down verifications) uncertainties
- 4. Two key concepts for inverse modelling: isotopic signature and variability
- 5. Improving emission estimates: revision of emission factors and activity
- 6. Geo-emissions in the official inventories (and the fake gas hydrate story)
- 7. Abiotic methane: a newly discovered geo-source

How to consider GEO-CH₄ emission for inverse studies?

Two misconceptions (wrong paradigm)

Geo-CH4 emissions are constant over time

Geo-CH₄ is always ¹³C enriched

Mud volcano eruptions over time

Aliyev et al (2002)

Geo-CH4 emissions are NOT constant over time

geologic CH4 flux (advective process) depends on

k subsurface permeability

∆P gas pressure gradient

Fracturing

tectonics (long term) seismicity (short term)

$$F = Cv$$
$$v = k \frac{\Delta P}{\mu Z}$$

Fluid charge/discharge

deep gas migration pulses natural gas extraction hydrostatic (aquifer) variations

$$P_{\rm g} > P_{\rm w} + P_{\rm c}$$

Enhanced degassing related to seismicity

It is well known that gas migration, seepage and, in particular, eruptions of mud volcanoes, can be stimulated by earthquakes, i.e. by the **passage of seismic waves or by coseismic changes in crustal stress and permeability** (e.g. Mellors et al., 2007; Manga et al., 2009; Mazzini and Etiope, 2017).

Reports of correlations between earthquakes and mud volcanoes eruptions are widespread

Examples:

Changes in Yellowstone geysers eruption behaviour after the 2002 M 7.9 Alaskan Denali earthquake (Husen et al., 2004)

Nirano MV (Italy) emissions after June 2013 M4.7 (Lupi et al., 2016)

Eruption of LUSI mud-gas flow (Indonesia) in March 2006, 2 days after 6.3 M earthquake (Mazzini et al, 2009)

Formation of the Kevachy MV island few hours after the September 2013 M7.7 Makran coast (Avouac et al., 2014)

Many eruptions of CH4-rich mud volcanoes in Azerbaijan....

0.08 Mt of CH4 injected into the atmosphere since 2006

Examples of decadal changes of seismicity

Tectonophysics, 57 (1979) Global variation of seismic activity KIYOO MOGI

Fig. 2. Locations of great shallow earthquakes ($M \ge 7.8$, focal depth < 100 km) during the period from 1931 to 1970. Open circles: 1931–1950; solid circles 1951–1970. (after Mogi, 1974)

Fig. 1. The seismic moment M_{o} , seismic energy E and magnitude M_{w} of great shallow earthquakes. The vertical bars are for individual earthquakes. The solid curve shows the annual average of seismic energy obtained by taking an unlagged 5-year running average. (after Kanamori, 1978).

Geo-CH4 emissions are NOT constant over time

geological CH4 flux (advective process) depends on

k subsurface permeability

 ΔP gas pressure gradient

Fracturing

tectonics (long term) seismicity (short term)

$$F = Cv$$
$$v = k \frac{\Delta P}{\mu Z}$$

Fluid charge/discharge

deep gas migration pulses natural gas extraction hydrostatic (aquifer) variations

$$P_{\rm g} > P_{\rm w} + P_{\rm c}$$

Examples of decadal changes of hydrostatic pressure (groundwater depletion)

Famiglietti (2014; The global groundwater crisis. Nature Climate Change 4)

Examples of decadal changes of hydrostatic pressure (groundwater depletion)

Famiglietti (2014; The global groundwater crisis. Nature Climate Change 4)

How to consider GEO-CH₄ emission for inverse studies?

Two misconceptions (wrong paradigm)

Geo-CH4 emissions are constant over time

Geo-CH₄ is always ¹³C enriched

GEOLOGIC SOURCES ARE NOT ALWAYS ¹³C-ENRICHED

Geologic microbial methane sources (with "wetland type" δ^{13} C) δ^{13} C < -60 ‰

Geologic microbial methane sources (with "wetland type" δ^{13} C) δ^{13} C < -60 ‰

Transylvania seeps

Porsugel mud volcano (Turkmenistan)

- 1. Geologic methane sources: definitions, classifications (what and where)
- 2. Acquisition of methane flux data: building a global flux data-set
- 3. Bottom-up global upscaling (and top-down verifications) uncertainties
- 4. Two key concepts for inverse modelling: isotopic signature and variability
- 5. Improving emission estimates: revision of emission factors and activity
- 6. Geo-emissions in the official inventories (and the fake gas hydrate story)
- 7. Abiotic methane: a newly discovered geo-source

Improving emission estimates: revision of emission factors and activity (2017-2018)

Revision and development of data-sets for each category of geo-sources

1. Emission factors: - accurate analysis of seep size and intensity (gas, seeps, mud volcanoes) - new microseepage flux data

2. Activity (number of seeps and seepage area); developing accurate microseepage maps

3. Gridded maps for inverse studies -

NASA-IDS project (2017-2019) coordinated by Stefan Schwietzke (CIRES-Colorado Un-NOAA)

Process-level investigation of revised global methane budget based on in situ and remote sensing of atmospheric composition and the land surface

Gridded mapping

CH4 flux (order of magnitude) in each cell

- 1. Geologic methane sources: definitions, classifications (what and where)
- 2. Acquisition of methane flux data: building a global flux data-set
- 3. Bottom-up global upscaling (and top-down verifications) uncertainties
- 4. Two key concepts for inverse modelling: isotopic signature and variability
- 5. Improving emission estimates: revision of emission factors and activity
- 6. Geo-emissions in the official inventories (and the fake gas hydrate story)
- 7. Abiotic methane: a newly discovered geo-source

Evolution of the IPCC Assessment Reports

Natural Sources of Atmospheric Methane

5%1

Table 1.2 Estimated Sources and Sinks of Methane

NO GEOLOGICAL

SOURCES

Annual Release (Tg CH4)

Source Natural Wetlands (bogs, swamps, tundra, etc) Rice Paddles	115 110	NO DISTINCTION OF SOURCES	11%
Entero, Fermentation (animalis) Gus Dnilling, venting, transmission Biomass Burning	80 45 40		76%
Termites Landihils Coal Mining Comma	40 40 35	SUURCES	
Freshwaters CH4 Hydrate Destabilization	5		NO GEOLOGICA SOURCES

GEOLOGICAL ADDED, BUT ONLY **OLD/ODD NUMBERS FROM MARINE** SEEPAGE

RECENT **GEOLOGICAL** VALUES **ENDORSED**

Methane and Nitrous Oxide Emissions From Natural Sources

Chapter 8. Terrestrial and Marine Geologic Sources

	Metha	ne (Tg CH ₄	/year)
Source	Emissions Estimate ^a	Range ^b	δ ¹³ C (‰) ^c
Wetlands	170.3		
- Northern/bogs	42.7	24–72	-62
- Tropical/swamps	127.6	81–206	-58.9
Upland soils and riparian areas	-30	Not available	
Oceans, estuaries, and rivers	9.1	2.3–15.6	-58
Permafrost	0.5	0–1	
Lakes	30	10–50	-53.8
Gas hydrates		2-9 ^e	-62.5
Terrestrial and marine geologic sources		42-64	-41.8
Wildfires		2–5	-25
Vegetation		Not a source or 20–60	Not available
Terrestrial arthropods ^f	20	2–22	-63
Wild animals	8	2–15	-60.5

The emission estimates for gas hydrates correspond to the flux of methane to the ocean, most of which is likely to be oxidized in the ocean water column.

2013 AR5

GAS HYDRATES.... FICTIONAL NUMBERS

Ciais et al (2013)

- 1. Geologic methane sources: definitions, classifications (what and where)
- 2. Acquisition of methane flux data: building a global flux data-set
- 3. Bottom-up global upscaling (and top-down verifications) uncertainties
- 4. Two key concepts for inverse modelling: isotopic signature and variability
- 5. Improving emission estimates: revision of emission factors and activity
- 6. Geo-emissions in the official inventories (and the fake gas hydrate story)
- 7. Abiotic methane: a newly discovered geo-source

GEOLOGIC METHANE SOURCES

Methane origin on Earth

Abiotic methane...not so rare

Reviews of Geophysics, 51 / 2013

ABIOTIC METHANE ON EARTH

Giuseppe Etiope^{1,2} and Barbara Sherwood Lollar³

Abiotic Gas: Atypical, But Not Rare

Giuseppe Etiope^{1,2} and Martin Schoell³

Table 7.1 A list of lmd-based serpentinisation sites where methane seepage (or transport by hyperalkaline waters) has been documented (updated December, 2014)

Country	Site	Setting	References
Methane C-H	isotopes determined		
Greece	Othrys Mt. (Archani, Ekkara)	Ophiolite	Etiope et al. (2013b)
Italy	Voltri-Genova (e.g., Acquasanta)	Ophiolite	Boschetti et al. (2013)
յանաս	Hakuba-Happo	Orogenic mæsif	Suda et al. (2014)
New Zealand	Poison Bay	Ophiolite	Lyon et al. (1990)
New Zealand	Red Hills, Dun Mountain	Ophiolite	Pawson et al. (2014)
Oman	Semail (e.g., Al Khaoud, Nizwa)	Ophiolite	Fritz et al. (1992), Boulart et al. (2013)
Philippines	Zambales (Los Fuegos Eternos)	Ophiolite	Abrajano et al. (1988)
Portugal	Cabeço de Vide	Igneous intrusion	Etiope et al. (2013c)
Spain	Ronda peridotites	Orogenic massif	Etiope et al. (2014)
Turkey	Chimaera	Ophiolite	Etiope et al. (2011b)
Turkey	Amik Basin (Kurtbagi, Tahtakopru)	Ophiolite	Yuce et al. (2014)
U.A.Emintes	Al Ferfar	Ophiolite	Etiope et al. (2015)
Incomplete or	missing C–H isotope analyses		
Canada	Tablelands	Ophiolite	Szponar et al. (2013)
Costa Rica	Santa Elena	Ophiolite	Sanchez-Murillo et al. (2014)
New Caledonia	Prony Bay Fiordland	Ophiolite	Monnin et al. (2014)
Norway	Leka	Ophiolite	Okland et al. (2012)
Philippines	Zambales (Manleluag)	Ophiolite	Meyer-Dombaxi et al. (2013)
Philippines	Palawan (Brooke's Point)	Ophiolite	Meyer-Dombaxl et al. (2013)
			3473 2 4 1 (2000)
Serbia	Zlatibor	Ophiolite	Miletic et al. (2009)

SEEPAGE OF ABIOTIC METHANE

TAKE HOME MESSAGE

Geo-CH4: 2nd most important CH4 natural source (~10%) (2nd source in absolute in pre-anthropogenic times)

Bottom-up estimates

- confirmed by inverse modelling
- updates and improvements in progress
- more geo-marine flux data are needed

Not constant over time (decadal changes possible)

Not always ¹³C-enriched

(partially overlapping with wetlands)

Abiotic CH4 emission unknown (to be added)

Thanks

