Assessing Geoengineering Proposals and Climate Risks Through Data-Informed Modeling

Tapio Schneider
Andrew Stuart
Climate predictions remain highly uncertain: E.g., allowable CO$_2$ concentration before crossing 2°C warming threshold.

29 current IPCC models

Schneider et al., *Nature Climate Change* 2017
Climate response is uncertain mostly because of low clouds.

Stratocumulus: colder

Cumulus: warmer
In some models, low clouds dampen warming; in some, they amplify warming
Climate models are too coarse to resolve clouds

Global model: ~10-50 km resolution

Cloud scales: ~10-100 m

NASA MODIS
No model simulates stratocumulus well

Cloud cover (%)

“Too few, too bright bias”

Lin et al. 2014
But we can simulate stratocumulus in limited areas
Interactions among many physical processes need to be modeled in stratocumulus clouds.
Explicitly simulating stratocumulus yields surprises that all climate models have missed.
With less efficient lateral energy transport, warming is even more dramatic.
SRM geoengineering only delays the stratocumulus instability, but it remains urgent to model low clouds. The graph shows that SRM reduces sea-surface temperature by 1.3 W m\(^{-2}\) per CO\(_2\) doubling. Progress on modeling low clouds is urgent.
What we can do now

Use global and limited-area models in hierarchical framework (e.g., to develop parameterizations)
Additionally, a wealth of observations is available, whose potential to improve models is untapped.
We want to integrate high-resolution simulations, global models, and observations in machine-learning system

Schneider et al., Geophys. Res. Lett., in press
Objective of learning about parameters is bias reduction and exploitation of “emergent constraints”

- Need to accumulate statistics over timescales >10 days:

\[
\langle \phi \rangle_T = \frac{1}{T} \int_{t_0}^{t_0+T} \phi(t) \, dt.
\]

- Objective function should penalize mean deviations (bias) and covariance mismatch (“emergent constraints”). E.g.:

\[
J_\theta(\theta) = \frac{1}{2} \lVert \langle f(y) \rangle_T - \langle f(\bar{y}) \rangle_T \rVert_2^2
\]

with moment function

\[
f(y) = \begin{pmatrix} y \\ \bar{y}_i \bar{y}_j \end{pmatrix}
\]

- Creates computational challenges because objective function evaluation is expensive

- But also creates an opportunity to radically improve ESM in similar way in which data assimilation has improved NWP

Schneider et al., in press
Earth System Modeling 2.0: Toward models that learn from observations and targeted high-resolution simulations

- Use machine learning techniques to learn about uncertain model components from observations. E.g.,
 - Learn parameters in physics-based cloud and ice models
 - Learn biogeochemical models empirically
 - Additionally, learn about physical models from high-resolution models nested within targeted ESM columns

We want to develop ESM with quantified uncertainties that are at least factor 2 smaller than current models
Climate goals and computing the future of clouds

Tapio Schneider, João Teixeira, Christopher S. Bretherton, Florent Brient, Kyle G. Pressel, Christoph Schär and A. Pier Siebesma

How clouds respond to warming remains the greatest source of uncertainty in climate projections. Improved computational and observational tools can reduce this uncertainty. Here we discuss the need for research focusing on high-resolution atmosphere models and the representation of clouds and turbulence within them.

Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations†

Tapio Schneider, Shiwei Lan, Andrew Stuart, João Teixeira

Accepted manuscript online: 30 November 2017 Full publication history

DOI: 10.1002/2017GL076101 View/save citation